Jump to content

Talk:Shot noise

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by 147.235.94.62 (talk) at 12:59, 6 August 2024 (Power Noise: new section). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

nature of shot noise

[edit]

i thought shot noise was to do with electrons passing over a junction between two different conducting materials? ill go else where and check... mark_metcalfe@hotmail.com —Preceding unsigned comment added by 158.125.1.23 (talkcontribs)

I think that's called a flicker noise... kuevis@hotmail.com —Preceding unsigned comment added by 150.150.77.68 (talkcontribs)

Hi,

You are absolutely right, and this page needs some editing. I think I or someone with more detailed knowledge should do this.

Briefly speaking, the granular nature of charge is not responsible for shot noise by itself. Shot noise occurs when charge carriers must cross a junction.

So for instance, a copper wite carrying current will exhibit only thermal noise but not shot noise, while a semiconductor junction will exhibit both.

Flicker noise is an altogether different phenomenon, and while there are several theories and models regarding flicker noise, there is no universally accepted physical model to explain it yet (perhaps a Nobel Prize waiting for someone), despite and perhaps owing to its universal nature. It is seen in phenomena from microscopic scale to the astronomical scale.

Vivek vivkr .at. yahoo . com —Preceding unsigned comment added by 62.218.180.1 (talkcontribs)

I believe you are rong. Shot noise occours in copper wires. Some discussion could take place due to the less deffined position of electrons in copper, but this only reduces the bandwith of the noise and not the its power.
I believe flicker noise is usually due to electron traps in the potential barrier beetwen conductors and isolators.
--Paclopes 19:37, 18 January 2007 (UTC)[reply]

According to Horowitz and Hill (2nd eddition) There is less than the expected shot noise in resisotrs and other conductors. (how much less is not specified) This is becasue the electrons in a conductor are coorelated, (I assume by the electric field), when an electron leaves on end of the conductor the other electrons "know" about it. For PN junctions the charge carriers move by diffusion, they are uncoorelated and show shot noise. I find the case of photon noise to be more confusing. All light sources have shot noise, but there can be excess noise from an incoherent light source (light bulb) under certain rather extreme conditions See Hanbury-Brown and Twiss Gherold 18:25, 9 February 2007 (UTC)[reply]

shot and thermal noise

[edit]

Shot noise is directly dependent on current while thermal noise is indepedent of the applied voltage or current, they don't seem to be related.

>> See the paper by Sarpeshkar, Delbruck, and Mead referenced in the main article. Apparently, they are related through Einstein's relation .

Treat an open circuited resistor as having a pair of balanced diffusion currents in opposite directions, so that the DC current is zero. Since the diffusion currents in opposite directions are uncorrelated, take the sum of the two noise power terms. Then substitute Einstein's relation and combine conductance terms to get and multiplying both sides by and taking the square root, obtain the classic forumula for Nyquist-Johnson noise:

Shot noise only depends on fluctuations in the number of carriers arriving in a given interval, assumed to be Poisson-distributed for most purposes, and not on any specific properties of the medium. Contact noise, 1/f noise, popcorn noise, etc., are all examples of excess noise.

references on noise

[edit]

Hi,

I forgot to post some references at the end of my mail. I am adding these here. There are bound to be many sources on the web too, which are more accessible to those who are not electrical engineers or have a good library nearby.

Ref. 1 has an excellent introduction on this topic in the Chapter on Noise, (Chap. 10). Ref. 2 is also decent, although their treatment of flicker noise is not perfectly satisfying, even if it is technically correct.

1. "The Design of CMOS Radio Frequency Integrated Circuits" by Thomas H Lee, Cambridge University Press.

2. "Analysis & Design of Analog Integrated Circuits" by Gray, Meyer, Hurst & Lewis, John Wiley & Sons (Chap. 11).

There exist many more references of course ...


Vivek —Preceding unsigned comment added by 62.218.180.1 (talkcontribs)

examples at top

[edit]

Say at the top how shot noise might mess up one's life or experiments. --Jidanni 2006-04-16

formulas

[edit]

Why there are no formulas for shot noise?! The page is only talk.... Somethink like

Please define delta f File Not Found 20:09, 22 September 2007 (UTC)[reply]

Merge Photon noise into this article

[edit]

Agree PAR 03:43, 5 November 2006 (UTC)[reply]

Agree Dr Lind 12:34, 20 December 2006 (ETC) (Shot noise being the more common term)

Deletion of content

[edit]

Can someone fact check these edits? I don't understand the changes that were made or why some of the content was deleted. — Omegatron 00:59, 15 November 2006 (UTC)[reply]

Hmmmm! I suggest we revert pending me finding my book on Noise ! 8-)--Light current 01:48, 15 November 2006 (UTC)[reply]

simple analogy for non specialists

[edit]

The article launches into the topic in a fairly technical manner and never explains why it's called 'shot' noise. The way I was introduced to the phenomenon was to imagine the difference between a cup of molten lead being poured onto a surface vs a cup of lead shot. This can also be extended to cover the phenomenon's relevance to extremely low level signals with a bit of imagination. Does someone more eloquent than me want to tackle this before I make a hash of it? :) MagnusL (talk) 11:21, 21 November 2007 (UTC)[reply]

I took a shot at an explanation along those lines. I typically explain this to students using light photons but sugar grains / lead shot are perhaps more accessible. That was reverted because it was 'unsourced/POV' -- that's a function of any explanation meant to give intuition. I'm not going to persist, use an edited version of this if you like. Mhisted (talk) 15:49, 24 July 2008 (UTC) 04:34, 1 June 2008 (UTC)[reply]

Wrong SNR

[edit]

The wrong SNR is given. You don't have to deal with the signal amplitude and the standard deviation, but with powers/energys, i.e. with the squared amplitude and the variance. Hence, the signal-to-noise ratio of shot noise is N. —Preceding unsigned comment added by 65.202.28.10 (talk) 22:42, 13 December 2007 (UTC)[reply]

Shot noise in conductors?

[edit]

I thought it was only when crossing junctions of some type. This page also seems to say, at least, that shot noise formulas are not applicable to conductors. — Omegatron (talk) 23:15, 3 May 2008 (UTC)[reply]

Here's another. — Omegatron (talk) 23:19, 3 May 2008 (UTC)[reply]

"Shot noise is present in any conductor — not just a semiconductor. Barriers in conductors can be as simple as imperfections or impurities in the metal. The level of shot noise, however, is very small due to the enormous numbers of electrons moving in the conductor, and the relative size of the potential barriers. Shot noise in semiconductors is much more pronounced." "Opamps for Everyone" — Omegatron (talk) 22:34, 4 May 2008 (UTC)[reply]

To summarize the analog.com article and Horowitz and Hill (who they quote): to have shot noise, you must have 1. small numbers of quanta and 2. independence between the arrival times of the quanta. Metal conductors violate #2 because they have long-range correlations between carriers. So you could still see shot noise in a long tube filled with a salt solution, but not in a long metal wire. Mhisted 05:05, 1 June 2008 (UTC)[reply]

I'm going to correct the article based on this discussion Mhisted (talk) 15:51, 24 July 2008 (UTC)[reply]

Statements about lasers

[edit]

Imagine light coming out of a laser pointer and hitting a wall. That light comes in small packets, or photons. When the spot is bright enough to see, there are many billions of light photons that hit the wall per second. Now, imagine turning down the laser brightness until the laser is almost off. Then, only a few photons hit the wall every second. But the fundamental physical processes that govern light emission say that these photons are emitted from the laser at random times.

Actually, the fundamental physical process behind lasing is stimulated emission. It's quantum mechanical, and hence probabilistic, not random. If laser physics were truly random, then laser light couldn't be coherent. Phase coherence is arguably the single defining characteristic of a laser!

Now, on a one-second time scale, yes, there is a most-likely number of photon arrivals. Naturally, if you measure the photon arrivals in many one-second intervals, you'll find a statistical distribution around this value. I'll grant you that this distribution probably qualifies as shot noise in that it looks random, but it's a question of time scale.

Also, I should point out that this distribution exists regardless of the laser's brightness -- i.e., the "shot noise" still exists even if there are billions of photons hitting a wall per second. It's just that the SNR is much higher than when the laser is dim.

Also, no links to photon or laser articles? --Firstorderapproximation (talk) 10:21, 29 January 2010 (UTC)[reply]

Yes, I was about to ask about this. Photons have Bose distribution, which might affect counting statistics. It is Bose statistics that make lasers work, with photons wanting to be in the same quantum state. And, being in the same quantum state, I suspect not statistically independent. Now, if you take a laser and attenuate the beam, then maybe. Note also that lasers have a threshold to start lasing, and so you can't just turn down the intensity. Well, I suppose you can, but they aren't lasers anymore. Semiconductor lasers are just LEDs below threshold. Gah4 (talk) 05:11, 12 April 2024 (UTC)[reply]

origin of the term "shot noise"?

[edit]

The term "shot noise" comes from looking at what happens to lead shot in a shot tower, right? That is, the arrival times of the shot (when they hit the water) are exponentially distributed, and the number in any given time period is Poisson distributed. Can anyone find a quick reference? cheers, 38.111.20.226 (talk) 19:44, 11 May 2010 (UTC)[reply]

I'd always assumed (without evidence) that it was named after buckshot because it scatters 'randomly' if not actually Poissonly. A quick Google search finds me one source claiming it's named after Schottky who first analysed it, and another saying it's named after "the sound made by a fistful of gunshot dropped on the floor... not the name of its discoverer". Perhaps a bit more research is needed.
Either way we should probably add some mention of Schottky to the article. Olaf Davis (talk) 20:31, 11 May 2010 (UTC)[reply]

Formulas for photography

[edit]

Suppose I were taking a picture and wanted to compute the shot noise. Assuming 100% QE and FF, and no other noise, I think I'd compute the luminous intensity on each pixel (based on the luminance of the subject, the magnification, subject distance, and entrance pupil diameter), then figure out the radiant intensity at the given wavelength, then use Planck's law to get the photon flux, and multiply by the exposure time to get the number of photons. Finally, using the Poisson distribution to find .

Does that sound right?

If so, then if I image a candle flame at 1m with an entrance pupil diameter of 10mm so it covers 100x100 pixels, then we are talking a solid angle of 2.5×10-5 steradians. So at 1/683 W/sr at 540×1012Hz (=555nm), we are talking 3.66e-8 W.

At that wavelength, each photon is 3.58e-19 J, so the photon flux is 1013 photons per second, or 1e10 photons for a 1/1000-second exposure, and so I get one million photons per pixel, so the standard deviation should be 1000 photons, or 0.1%.

If I throw in QE*FF=0.3 I get 0.18%, which, for an 8-bit sensor near its max looks like sigma = 0.5 counts.

Is that right? —Ben FrantzDale (talk) 15:00, 21 June 2010 (UTC)[reply]

Before Schottky there was Campbell

[edit]

I don't think Schottky was the first to study shot-noise. According to the point process literature[1] [2], it was the work[3][4] by Norman R. Campbell on shot noise[2], which was partly inspired by the work of Ernest Rutherford and Hans Geiger on alpha particle detection, where the Poisson point process arose as a solution to a family of differential equations by Harry Bateman. In Campbell's work, he presents the moments and generating functions of the random sum of a Poisson process on the real line, but remarks that the main mathematical argument was due to G. H. Hardy, which has inspired some to say that the result should be called the Campbell-Hardy theorem. [5].

See Campbell's theorem for more information.

  1. ^ J. F. C. Kingman. Poisson processes, volume 3. Oxford university press, 1992.
  2. ^ a b D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Vol. I. Probability and its Applications (New York). Springer, New York, second edition, 2003.
  3. ^ N. Campbell. The study of discontinuous phenomena. In Proc. Camb. Phil. Soc, volume 15, page 310, 1909.
  4. ^ N. Campbell. Discontinuities in light emission. In Proc. Cambridge Phil. Soc, volume 15, page 3, 1909.
  5. ^ Stirzaker, D., Advice to hedgehogs, or, constants can vary, The Mathematical Gazette,volume 84, page 202--203.

Improbable keeler (talk) 11:52, 30 September 2013 (UTC)[reply]

ℏ?

[edit]

I suspect ℏ in the formulae denotes the reduced Planck constant. Could someone confirm that and add that clarification to the text? A formula does not make much sense unless its variables are explained. The same goes for the page about the Landauer formula. --Mlewan (talk) 07:04, 22 November 2015 (UTC)[reply]

Yes, it is definitely correct. On the other hand, I doubt that the readers who do not know what ℏ is can benefit much from this part of the article.--Ymblanter (talk) 08:27, 22 November 2015 (UTC)[reply]

Photon noise

[edit]

This article is flatly wrong in conflating shot noise with photon noise. The complication is that photons are bosons, which results in an additional noise term at low frequency. See the new, referenced version of the photon noise article, and please correct this article. WorstUsernameEver (talk) 23:40, 23 October 2019 (UTC)[reply]

I believe you are wrong, as far as normal usage goes. "Photon noise" refers to the shot noise involved in the detection of light (or any EM radiation) due to the quantization of the EM field's energy given an intensity level. Additionally for bosonic fields there can be, as you point out, "wave noise" which changes the intensity (on a time scale determined by the light's bandwidth) for THERMAL sources, and this is a classical effect (but can also be described as "photon bunching") which is not a property of light itself: it is not present in laser light for instance. I think the photon noise article is also flawed in that regard, given the normal usage of the term.
But I'm not sure who sets the actual definition of these terms. In practice, at frequencies high enough that shot noise from photons is observed, wave noise is normally not observable (because it would take a very high temperature source). I have never seen, in practice, a need to consider wave noise in the detection of light (nor photon noise in the detection of radio waves). Note that Hanbury Brown NEVER observed wave noise directly, only the correlation of noise in two separate detectors attributable to the wave noise component buried in them, since their shot noises were independent and uncorrelated. Instead of changing the usage of these terms, why not start a page on wave noise, and link to it from the photon noise page? Interferometrist (talk) 23:43, 30 October 2019 (UTC)[reply]
Though I considered it to be somewhat too "grey lit" to use as a reference, my main source was actually this. As far as I can tell, the total shot+wave is the way the term is used today among the experts who care about both terms, this being especially important, in actual practice as documented there, in the microwave spectrum. Expressing the noise in terms of NEP escalates the author's intended importance of the detection process in defining what is meant by noise. Either way, I think you agree that the wave noise component is article-worthy, whether that be a separate article or simply where I have already put it and believe it naturally to belong. WorstUsernameEver (talk) 09:05, 31 October 2019 (UTC)[reply]
@WorstUsernameEver: - thanks for your reply. I looked at that document and actually it looks pretty good and could definitely be accepted as a RS. HOWEVER the fact that he entitled a section "4.5 Photon NEP" cannot be construed as him defining "photon noise" to be shot noise plus wave noise, nor even less that definition being commonly accepted. My impression, as I said, was otherwise. But I work with a number of people in these areas and will make a point of asking them, off the cuff, what their definition includes.
And yes we certainly agree that wave noise should be dealt with, somewhere, in Wikipedia. I see there is a page with the title (which I don't think is the best) Hanbury Brown and Twiss effect. To its credit, the article describes wave noise using classical electromagnetism, and then also goes on to present the effect on photon counting in terms of "photon bunching." I would (but don't have time or sufficient motivation to) rename that page "Wave noise" and include a section where the effect on detection of shot and wave noise are considered together and compared in magnitude (versus wavelength, blackbody temperature), and could also link to Rayleigh fading which is the same effect from a different model and Rayleigh distribution which describes its statistical distribution (in classical terms). This would subsume the current Photon noise page (thus merge). SOMEWHERE "photon noise" would have to be defined (once we agree on that!). For now, I would lump these both into "photon detection noise" (but that would need to include other terms possibly, depending on where you draw the line, thermal background noise and excess noise terms involved in detection such as G-R noise in which the shot noise is doubled). Are you inclined to work on that at all?
In the meantime, the correctness of the title of Photon noise is in question (though I don't think it needs to be quickly taken down or anything as its content is fine outside of one word's definition). Interferometrist (talk) 18:24, 3 November 2019 (UTC)[reply]
Yes, please, consult with your colleagues. Without addressing the bulk, I would call your attention also to section 4.12, which deals with correlations between adjacent detectors. There is a penalty to oversampling within a coherence volume. WorstUsernameEver (talk) 22:38, 4 November 2019 (UTC)[reply]

Power Noise

[edit]

two things bother me with the formula for power shot noise P=(1/2)qIRΔf: 1. When calculating effect of small signal (noise in this case) in a variable on a function, one should multiply the small signal by the derivative of the function. In other words, if P=I^2R and I comprises small signal noise i, the noise in P should be σ_p=(dP/dI)*i=2IR*i=2IRsqrt(2qIΔf). This in contrast to simply substitute I with i in the formula. 2. In case I am wrong on 1. and a simple substitution (I by i) is required, why does the product 2 in the i^2=2qIΔf was replaced by a product of 1/2? Would appreciate an answer here Thanks 147.235.94.62 (talk) 12:59, 6 August 2024 (UTC)[reply]