Jump to content

Ring size: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
use maths
Replaced content with ' the ring size'
Tags: Replaced blanking
Line 1: Line 1:
{{For|the "ring gauge" used for cigars (1/64 inch)|Cigar}}
{{Multiple issues|
{{refimprove|date=January 2014}}
{{original research|date=January 2014}}
}}


the ring size
[[File:Triboulet.jpg|thumb|A ''Bergeon'' ring sizing stick. (ISO 8653:1986 and number scales)]]

'''Ring size''' is a measurement used to denote the circumference of [[Ring (jewellery)|jewellery ring]]s.

__TOC__

== Systems ==

There are several systems for denoting the sizes of [[jewellery]] [[Ring (jewellery)|rings]] in use around the world:

* The [[International Organization for Standardization|ISO]] standard for ring sizes is ISO 8653:2016, which defines standard ring sizes in terms of the inner [[circumference]] of the ring measured in millimetres.<ref>{{Cite web|url=https://www.iso.org/standard/65408.html|title=Jewellery -- Ring-sizes -- Definition, measurement and designation}}</ref>
*In the [[United States]] and [[Canada]], ring sizes are specified using a numerical scale, with quarter and half sizes. An increase of a full size is an increase of 0.032&nbsp;inch (0.8128&nbsp;mm) in diameter, or roughly 1/10 inch (more precisely, 0.1005 in or 2.55&nbsp;mm) in inside circumference.
*In [[Ireland]], the [[United Kingdom]] and [[Australia]], ring sizes are specified using an alphabetical scale, with half sizes.
*In [[India]], [[Japan]] and [[China]], ring sizes are specified using a numerical scale, that only has whole sizes, and does not have simple [[linear]] correlation with diameter or circumference.
*In [[Austria]], [[France]], [[Germany]], [[Belgium]] and [[Scandinavia]], ring sizes are specified using actual internal circumference in mm (the same as the ISO standard). In some countries, half sizes may be used.
*In [[Italy]], [[Spain]], [[Netherlands]], and [[Switzerland]], ring sizes are specified as the circumference minus 40mm. A 50 in Germany will be a 10 in Switzerland.

Before accepting the equations and values in the article, consider the multiple dissenting opinions listed in the talk page and other sites.
<ref>{{Cite web|url=http://www.ringsizes.co/|title=The Official International Ring Size Conversion Chart}}</ref>
<ref>{{Cite web|url=https://www.larsonjewelers.com/t-Ring-Size-Conversion-Chart.aspx|title=Larson Jewelers Common Ring Sizing Systems of the World}}</ref>

For the system prevailing the United States, the Circular of the Bureau of Standards
<ref>{{cite report |author=S.W. Stratton, Director |date=Jan 24, 1921 |title=Circular of the Bureau of Standards, No 43., Jewelers' and Silversmiths' Weights and Measures |publisher=United States Department of Commerce |page=39 }}</ref> summarizes the situation as: "While there apparently is only one standard in use in the United States, in reality, because of the lack of specific dimensions and because of the errors introduced by the adoption of a common commercial article as a pattern, there are many, although similar, standards." There does not appear to have been any improvement in the standard since then.

== Equations ==

To convert from US, Canada and Mexico ring sizes ('''s''') to ISO 8653:2016 circumference:

<math>c = 2.55 \times s + 36.5</math>

and for diameter:

<math>d = 0.8128 \times s + 11.63</math>

== Chart ==

{| class="wikitable"
|+ Conversion chart for ring sizes<ref>{{Cite news|url=http://blog.jewelove.in/2016/01/convert-your-ring-size-to-mm-ring-size.html|title=Convert Your Ring Size to MM : Ring Size Guide|last=|first=|date=|work=|newspaper=Jewelove|access-date=2016-11-27|via=}}</ref>
|-
! colspan="2" | Inside [[diameter]]
! colspan="2" | Inside [[circumference]]
! colspan="5" | Sizes
|-
!(in)
!(mm)
!(in)
!(mm)
![[United States]],<br>[[Canada]] and<br>[[Mexico]]
![[United Kingdom]],<br>[[Ireland]],<br>[[Australia]],<br>[[South Africa]] and<br>[[New Zealand]]
![[China]], <br>[[Japan]], <br>[[South America]]
![[India]]
![[Italy]], <br>[[Spain]], <br>[[Switzerland]]
|-
|0.458||{{round|0.458*25.4|2}}||{{round|0.458*pi|2}}||{{round|0.458*25.4*pi|1}}||0 || || || ||
|-
|0.466||{{round|0.466*25.4|2}}||{{round|0.466*pi|2}}||{{round|0.466*25.4*pi|1}}||¼ || || || ||
|-
|0.474||{{round|0.474*25.4|2}}||{{round|0.474*pi|2}}||{{round|0.474*25.4*pi|1}}||½ ||A || || ||
|-
|0.482||{{round|0.482*25.4|2}}||{{round|0.482*pi|2}}||{{round|0.482*25.4*pi|1}}||¾ ||A½|| || ||
|-
|0.49 ||{{round|0.49 *25.4|2}}||{{round|0.49 *pi|2}}||{{round|0.49 *25.4*pi|1}}||1 ||B ||1 || ||
|-
|0.498||{{round|0.498*25.4|2}}||{{round|0.498*pi|2}}||{{round|0.498*25.4*pi|1}}||1¼||B½|| || ||
|-
|0.506||{{round|0.506*25.4|2}}||{{round|0.506*pi|2}}||{{round|0.506*25.4*pi|1}}||1½||C || || ||{{#expr:{{round|(0.506*25.4*pi-40)*4|0}}/4}}
|-
|0.514||{{round|0.514*25.4|2}}||{{round|0.514*pi|2}}||{{round|0.514*25.4*pi|1}}||1¾||C½|| ||1 ||{{#expr:{{round|(0.514*25.4*pi-40)*4|0}}/4}}
|-
|0.522||{{round|0.522*25.4|2}}||{{round|0.522*pi|2}}||{{round|0.522*25.4*pi|1}}||2 ||D ||2 ||2 ||{{#expr:{{round|(0.522*25.4*pi-40)*4|0}}/4}}
|-
|0.53 ||{{round|0.53 *25.4|2}}||{{round|0.53 *pi|2}}||{{round|0.53 *25.4*pi|1}}||2¼||D½|| || ||{{#expr:{{round|(0.53 *25.4*pi-40)*4|0}}/4}}
|-
|0.538||{{round|0.538*25.4|2}}||{{round|0.538*pi|2}}||{{round|0.538*25.4*pi|1}}||2½||E ||3 ||3 ||{{#expr:{{round|(0.538*25.4*pi-40)*4|0}}/4}}
|-
|0.546||{{round|0.546*25.4|2}}||{{round|0.546*pi|2}}||{{round|0.546*25.4*pi|1}}||2¾||E½|| ||4 ||{{#expr:{{round|(0.546*25.4*pi-40)*4|0}}/4}}
|-
|0.554||{{round|0.554*25.4|2}}||{{round|0.554*pi|2}}||{{round|0.554*25.4*pi|1}}||3 ||F ||4 || ||{{#expr:{{round|(0.554*25.4*pi-40)*4|0}}/4}}
|-
|0.562||{{round|0.562*25.4|2}}||{{round|0.562*pi|2}}||{{round|0.562*25.4*pi|1}}||3¼||F½||5 ||5 ||{{#expr:{{round|(0.562*25.4*pi-40)*4|0}}/4}}
|-
|0.57 ||{{round|0.57 *25.4|2}}||{{round|0.57 *pi|2}}||{{round|0.57 *25.4*pi|1}}||3½||G || || ||{{#expr:{{round|(0.57 *25.4*pi-40)*4|0}}/4}}
|-
|0.578||{{round|0.578*25.4|2}}||{{round|0.578*pi|2}}||{{round|0.578*25.4*pi|1}}||3¾||G½||6 ||6 ||{{#expr:{{round|(0.578*25.4*pi-40)*4|0}}/4}}
|-
|0.586||{{round|0.586*25.4|2}}||{{round|0.586*pi|2}}||{{round|0.586*25.4*pi|1}}||4 ||H ||7 || ||{{#expr:{{round|(0.586*25.4*pi-40)*4|0}}/4}}
|-
|0.594||{{round|0.594*25.4|2}}||{{round|0.594*pi|2}}||{{round|0.594*25.4*pi|1}}||4¼||H½|| ||7 ||{{#expr:{{round|(0.594*25.4*pi-40)*4|0}}/4}}
|-
|0.602||{{round|0.602*25.4|2}}||{{round|0.602*pi|2}}||{{round|0.602*25.4*pi|1}}||4½||I ||8 ||8 ||{{#expr:{{round|(0.602*25.4*pi-40)*4|0}}/4}}
|-
|0.61 ||{{round|0.61 *25.4|2}}||{{round|0.61 *pi|2}}||{{round|0.61 *25.4*pi|1}}||4¾||J || ||9 ||{{#expr:{{round|(0.61 *25.4*pi-40)*4|0}}/4}}
|-
|0.618||{{round|0.618*25.4|2}}||{{round|0.618*pi|2}}||{{round|0.618*25.4*pi|1}}||5 ||J½||9 || ||{{#expr:{{round|(0.618*25.4*pi-40)*4|0}}/4}}
|-
|0.626||{{round|0.626*25.4|2}}||{{round|0.626*pi|2}}||{{round|0.626*25.4*pi|1}}||5¼||K || ||10||{{#expr:{{round|(0.626*25.4*pi-40)*4|0}}/4}}
|-
|0.634||{{round|0.634*25.4|2}}||{{round|0.634*pi|2}}||{{round|0.634*25.4*pi|1}}||5½||K½||10|| ||{{#expr:{{round|(0.634*25.4*pi-40)*4|0}}/4}}
|-
|0.642||{{round|0.642*25.4|2}}||{{round|0.642*pi|2}}||{{round|0.642*25.4*pi|1}}||5¾||L || ||11||{{#expr:{{round|(0.642*25.4*pi-40)*4|0}}/4}}
|-
|0.65 ||{{round|0.65 *25.4|2}}||{{round|0.65 *pi|2}}||{{round|0.65 *25.4*pi|1}}||6 ||L½||11||12||{{#expr:{{round|(0.65 *25.4*pi-40)*4|0}}/4}}
|-
|0.658||{{round|0.658*25.4|2}}||{{round|0.658*pi|2}}||{{round|0.658*25.4*pi|1}}||6¼||M ||12|| ||{{#expr:{{round|(0.658*25.4*pi-40)*4|0}}/4}}
|-
|0.666||{{round|0.666*25.4|2}}||{{round|0.666*pi|2}}||{{round|0.666*25.4*pi|1}}||6½||M½||13||13||{{#expr:{{round|(0.666*25.4*pi-40)*4|0}}/4}}
|-
|0.674||{{round|0.674*25.4|2}}||{{round|0.674*pi|2}}||{{round|0.674*25.4*pi|1}}||6¾||N || || ||{{#expr:{{round|(0.674*25.4*pi-40)*4|0}}/4}}
|-
|0.682||{{round|0.682*25.4|2}}||{{round|0.682*pi|2}}||{{round|0.682*25.4*pi|1}}||7 ||N½||14||14||{{#expr:{{round|(0.682*25.4*pi-40)*4|0}}/4}}
|-
|0.69 ||{{round|0.69 *25.4|2}}||{{round|0.69 *pi|2}}||{{round|0.69 *25.4*pi|1}}||7¼||O || ||15||{{#expr:{{round|(0.69 *25.4*pi-40)*4|0}}/4}}
|-
|0.698||{{round|0.698*25.4|2}}||{{round|0.698*pi|2}}||{{round|0.698*25.4*pi|1}}||7½||O½||15|| ||{{#expr:{{round|(0.698*25.4*pi-40)*4|0}}/4}}
|-
|0.706||{{round|0.706*25.4|2}}||{{round|0.706*pi|2}}||{{round|0.706*25.4*pi|1}}||7¾||P || ||16||{{#expr:{{round|(0.706*25.4*pi-40)*4|0}}/4}}
|-
|0.714||{{round|0.714*25.4|2}}||{{round|0.714*pi|2}}||{{round|0.714*25.4*pi|1}}||8 ||P½||16||17||{{#expr:{{round|(0.714*25.4*pi-40)*4|0}}/4}}
|-
|0.722||{{round|0.722*25.4|2}}||{{round|0.722*pi|2}}||{{round|0.722*25.4*pi|1}}||8¼||Q || || ||{{#expr:{{round|(0.722*25.4*pi-40)*4|0}}/4}}
|-
|0.73 ||{{round|0.73 *25.4|2}}||{{round|0.73 *pi|2}}||{{round|0.73 *25.4*pi|1}}||8½||Q½||17||18||{{#expr:{{round|(0.73 *25.4*pi-40)*4|0}}/4}}
|-
|0.738||{{round|0.738*25.4|2}}||{{round|0.738*pi|2}}||{{round|0.738*25.4*pi|1}}||8¾||R || ||19||{{#expr:{{round|(0.738*25.4*pi-40)*4|0}}/4}}
|-
|0.746||{{round|0.746*25.4|2}}||{{round|0.746*pi|2}}||{{round|0.746*25.4*pi|1}}||9 ||R½||18|| ||{{#expr:{{round|(0.746*25.4*pi-40)*4|0}}/4}}
|-
|0.754||{{round|0.754*25.4|2}}||{{round|0.754*pi|2}}||{{round|0.754*25.4*pi|1}}||9¼||S || ||20||{{#expr:{{round|(0.754*25.4*pi-40)*4|0}}/4}}
|-
|0.762||{{round|0.762*25.4|2}}||{{round|0.762*pi|2}}||{{round|0.762*25.4*pi|1}}||9½||S½||19||21||{{#expr:{{round|(0.762*25.4*pi-40)*4|0}}/4}}
|-
|0.77 ||{{round|0.77 *25.4|2}}||{{round|0.77 *pi|2}}||{{round|0.77 *25.4*pi|1}}||9¾||T || || ||{{#expr:{{round|(0.77 *25.4*pi-40)*4|0}}/4}}
|-
|0.778||{{round|0.778*25.4|2}}||{{round|0.778*pi|2}}||{{round|0.778*25.4*pi|1}}||10||T½||20||22||{{#expr:{{round|(0.778*25.4*pi-40)*4|0}}/4}}
|-
|0.786||{{round|0.786*25.4|2}}||{{round|0.786*pi|2}}||{{round|0.786*25.4*pi|1}}||10¼||U ||21||23||{{#expr:{{round|(0.786*25.4*pi-40)*4|0}}/4}}
|-
|0.794||{{round|0.794*25.4|2}}||{{round|0.794*pi|2}}||{{round|0.794*25.4*pi|1}}||10½||U½||22|| ||{{#expr:{{round|(0.794*25.4*pi-40)*4|0}}/4}}
|-
|0.802||{{round|0.802*25.4|2}}||{{round|0.802*pi|2}}||{{round|0.802*25.4*pi|1}}||10¾||V || ||24||{{#expr:{{round|(0.802*25.4*pi-40)*4|0}}/4}}
|-
|0.81 ||{{round|0.81 *25.4|2}}||{{round|0.81 *pi|2}}||{{round|0.81 *25.4*pi|1}}||11 ||V½||23||25||{{#expr:{{round|(0.81 *25.4*pi-40)*4|0}}/4}}
|-
|0.818||{{round|0.818*25.4|2}}||{{round|0.818*pi|2}}||{{round|0.818*25.4*pi|1}}||11¼||W || || ||{{#expr:{{round|(0.818*25.4*pi-40)*4|0}}/4}}
|-
|0.826||{{round|0.826*25.4|2}}||{{round|0.826*pi|2}}||{{round|0.826*25.4*pi|1}}||11½||W½||24||26||{{#expr:{{round|(0.826*25.4*pi-40)*4|0}}/4}}
|-
|0.834||{{round|0.834*25.4|2}}||{{round|0.834*pi|2}}||{{round|0.834*25.4*pi|1}}||11¾||X || || ||{{#expr:{{round|(0.834*25.4*pi-40)*4|0}}/4}}
|-
|0.842||{{round|0.842*25.4|2}}||{{round|0.842*pi|2}}||{{round|0.842*25.4*pi|1}}||12 ||X½||25||27||{{#expr:{{round|(0.842*25.4*pi-40)*4|0}}/4}}
|-
|0.85 ||{{round|0.85 *25.4|2}}||{{round|0.85 *pi|2}}||{{round|0.85 *25.4*pi|1}}||12¼||Y || ||28||{{#expr:{{round|(0.85 *25.4*pi-40)*4|0}}/4}}
|-
|0.858||{{round|0.858*25.4|2}}||{{round|0.858*pi|2}}||{{round|0.858*25.4*pi|1}}||12½||Z ||26|| ||{{#expr:{{round|(0.858*25.4*pi-40)*4|0}}/4}}
|-
|0.866||{{round|0.866*25.4|2}}||{{round|0.866*pi|2}}||{{round|0.866*25.4*pi|1}}||12¾||Z½|| ||29||{{#expr:{{round|(0.866*25.4*pi-40)*4|0}}/4}}
|-
|0.874||{{round|0.874*25.4|2}}||{{round|0.874*pi|2}}||{{round|0.874*25.4*pi|1}}||13 || ||27||30||{{#expr:{{round|(0.874*25.4*pi-40)*4|0}}/4}}
|-
|0.882||{{round|0.882*25.4|2}}||{{round|0.882*pi|2}}||{{round|0.882*25.4*pi|1}}||13¼||Z1|| || ||{{#expr:{{round|(0.882*25.4*pi-40)*4|0}}/4}}
|-
|0.89 ||{{round|0.89 *25.4|2}}||{{round|0.89 *pi|2}}||{{round|0.89 *25.4*pi|1}}||13½|| || ||31||{{#expr:{{round|(0.89 *25.4*pi-40)*4|0}}/4}}
|-
|0.898||{{round|0.898*25.4|2}}||{{round|0.898*pi|2}}||{{round|0.898*25.4*pi|1}}||13¾||Z2|| ||32||{{#expr:{{round|(0.898*25.4*pi-40)*4|0}}/4}}
|-
|0.906||{{round|0.906*25.4|2}}||{{round|0.906*pi|2}}||{{round|0.906*25.4*pi|1}}||14 ||Z3|| || ||{{#expr:{{round|(0.906*25.4*pi-40)*4|0}}/4}}
|-
|0.914||{{round|0.914*25.4|2}}||{{round|0.914*pi|2}}||{{round|0.914*25.4*pi|1}}||14¼|| || ||33||{{#expr:{{round|(0.914*25.4*pi-40)*4|0}}/4}}
|-
|0.922||{{round|0.922*25.4|2}}||{{round|0.922*pi|2}}||{{round|0.922*25.4*pi|1}}||14½||Z4|| || ||{{#expr:{{round|(0.922*25.4*pi-40)*4|0}}/4}}
|-
|0.93 ||{{round|0.93 *25.4|2}}||{{round|0.93 *pi|2}}||{{round|0.93 *25.4*pi|1}}||14¾|| || ||34||{{#expr:{{round|(0.93 *25.4*pi-40)*4|0}}/4}}
|-
|0.938||{{round|0.938*25.4|2}}||{{round|0.938*pi|2}}||{{round|0.938*25.4*pi|1}}||15 || || ||35||{{#expr:{{round|(0.938*25.4*pi-40)*4|0}}/4}}
|-
|0.946||{{round|0.946*25.4|2}}||{{round|0.946*pi|2}}||{{round|0.946*25.4*pi|1}}||15¼|| || || ||{{#expr:{{round|(0.946*25.4*pi-40)*4|0}}/4}}
|-
|0.954||{{round|0.954*25.4|2}}||{{round|0.954*pi|2}}||{{round|0.954*25.4*pi|1}}||15½|| || ||36||{{#expr:{{round|(0.954*25.4*pi-40)*4|0}}/4}}
|-
|0.962||{{round|0.962*25.4|2}}||{{round|0.962*pi|2}}||{{round|0.962*25.4*pi|1}}||15¾|| || || ||{{#expr:{{round|(0.962*25.4*pi-40)*4|0}}/4}}
|-
|0.97 ||{{round|0.97 *25.4|2}}||{{round|0.97 *pi|2}}||{{round|0.97 *25.4*pi|1}}||16 || || ||37||{{#expr:{{round|(0.97 *25.4*pi-40)*4|0}}/4}}
|}

Ring sizes can be measured physically by a plastic or metal ring sizer, or by measuring the inner diameter of a ring that already fits. There are also online measuring tools available. Online measuring tools vary, but many offer multiple ways to measure the ring size, such as wrapping a paper cutout around the finger, or measuring a current ring according to a chart.

== References ==

{{reflist}}

[[Category:Rings]]
[[Category:Sizes in clothing]]

Revision as of 13:18, 9 May 2018

the ring size