Jump to content

Talk:Derivative: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
removed redundant skiptotalk, reply
No edit summary
Line 49: Line 49:


If x is time t, y is speed v and if c is acceleration a, then line y=c*x=v. So x=t, y=v, c=a. And y'=(c*x)'=c*1=c. So speed v derivative v'=a. And v=t*a, v'=a. Or more precise can be written v'(t)=(t*a)'=a. Or <math>{dv\over dt}={d(t\cdot a)\over dt}=a</math>. Seems that no more else derivative in physics is used related with acceleration, speed, time or distance.
If x is time t, y is speed v and if c is acceleration a, then line y=c*x=v. So x=t, y=v, c=a. And y'=(c*x)'=c*1=c. So speed v derivative v'=a. And v=t*a, v'=a. Or more precise can be written v'(t)=(t*a)'=a. Or <math>{dv\over dt}={d(t\cdot a)\over dt}=a</math>. Seems that no more else derivative in physics is used related with acceleration, speed, time or distance.

HOW CAN I KNOW CALCULUS?

Revision as of 12:54, 19 October 2010

Good articleDerivative has been listed as one of the Mathematics good articles under the good article criteria. If you can improve it further, please do so. If it no longer meets these criteria, you can reassess it.
Article milestones
DateProcessResult
October 10, 2006Good article nomineeListed
September 9, 2007Good article reassessmentKept
Current status: Good article
WikiProject iconMathematics GA‑class Top‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
GAThis article has been rated as GA-class on Wikipedia's content assessment scale.
TopThis article has been rated as Top-priority on the project's priority scale.

Template:FAOL Template:WP1.0

Simple English?

The language in this article still baffles me. In all honesty, calculus in general baffles me! Still it would be nice if someone could dumb it down enough to write up a Simple English Wikipedia version of the article - (Simple:Derivative) .. if that's even possible. -- œ 03:22, 4 April 2010 (UTC)[reply]

    It is an easy mistake to think that Simple is intended for users are not prepared with the underlying knowledge needed for understanding a particular article in this WP. Rather, its purpose is to serve non-native speakers of English whose English vocabulary is small, while presuming the same level of underlying knowledge appropriate to the corresponding topic in any of the other languages of WP.
    The article you want would be on this WP, with a title like, perhaps, Minimal concepts for understanding differential calculus. I'm not sure we have any distinct articles with this role, and i'm pretty sure there is no template along the lines of {{prerequisite}}. We may need a WikiProject intellectual accessibility (with sub-projects that each have a respective major subject area as another parent) to review the lead sections of the more technical articles woth the goal that as large as feasible a fraction of users will recognize which links they need to follow to get up to speed for the article itself.
    OTOH (and more likely why i haven't seen those in the last 7 years -- rather than bcz of their existing under other names), the ability to tackle a given article depends importantly on at least two factors about the reader: cognitive style, and background knowledge (which probably has, as its primary determinants, the content and level of formal education or intensive self-directed study, and experience from work and "hobbies"). Its not unreasonable to argue that an encyclopedia is not a textbook, and can't reasonably hope to serve the needs of, say, someone who wants to understand differentiation but hasn't previously learned advanced algebra (if i correctly recall the title of what i once took). I recall being convinced (during the course that i mean) that i had absorbed the concept of function (mathematics), but going around for an extended period w/o being able to grasp why it was worthwhile to single out that concept for a formal definition; that memory leaves me suspecting that
  1. anyone who first encounters the concept of "function" in WP will need a textbook -- if not an instructor -- in addition to WP, to understand any plausible derivative encyclopedia article, and
  2. anyone who first encounters "derivative" here will need a textbook or instructor to understand any plausible partial derivative encyclopedia article.
(Someone remarked to Charlie Rose the other night that the only institutions that have survived the last 500 years unchanged in their essential nature are universities. So the inherent structure of knowledge, rather than the tendency of privilege to be used to preserve privilege, is probably the explanation for the academic system -- whatever media theorists may speculate.)
--Jerzyt 20:02, 4 August 2010 (UTC)[reply]
Thanks for that.. I actually did check out the Wikibooks links to the various textbooks, but they weren't much help either.. But I understand what you're saying.. maybe if I actually bothered to pay attention to high school math lol! -- œ 15:19, 5 October 2010 (UTC)[reply]

Vandalism?

Can someone explain what the hell is going on with the Kim Hyun Bin nonsense? Only dead fish go with the flow. 17:52, 16 May 2010 (UTC)[reply]

Actually, you know what, can someone do something about whatever 211.117.11.123 has been doing? Someone with rollback? Only dead fish go with the flow. 18:18, 16 May 2010 (UTC)[reply]

Picture of function and derivative

It would be nice I think for the picture showing the tangent at the begining to show the graph of the derivative function as well.

An idea for linking the two might be to show a triangle base length one on the x axis with the same direction hypotenuse as the tangent line the top point would move along the graph of the derivative. Dmcq (talk) 12:07, 18 June 2010 (UTC)[reply]

derivative in physics

If x is time t, y is speed v and if c is acceleration a, then line y=c*x=v. So x=t, y=v, c=a. And y'=(c*x)'=c*1=c. So speed v derivative v'=a. And v=t*a, v'=a. Or more precise can be written v'(t)=(t*a)'=a. Or . Seems that no more else derivative in physics is used related with acceleration, speed, time or distance.

HOW CAN I KNOW CALCULUS?