Kostka number: Difference between revisions
Appearance
Content deleted Content added
m →Examples: +. |
m →Examples: +sp |
||
Line 14: | Line 14: | ||
:''s''<sub>21</sub> = ''m''<sub>21</sub> + 2''m''<sub>111</sub> |
:''s''<sub>21</sub> = ''m''<sub>21</sub> + 2''m''<sub>111</sub> |
||
:''s''<sub>111</sub> = ''m''<sub>111.</sub> |
:''s''<sub>111</sub> = ''m''<sub>111.</sub> |
||
{{harvtxt|Kostka|1882|loc= |
{{harvtxt|Kostka|1882|loc=pages 118-120}} gave tables of these numbers for partitions of numbers up to 8. |
||
==References== |
==References== |
Revision as of 17:04, 30 April 2009
In mathematics, a Kostka number Kλμ, introduced by Kostka (1882), is a non-negative integer depending on two partitions λ and μ, that is equal to the number of semistandard Young tableaux of shape λ and weight μ. They can be used to express Schur polynomials sλ as a linear combination of monomial symmetric functions mμ:
Kostka numbers are generalized by the 1 or 2 variable Kostka polynomials.
Examples
The Kostka numbers for partitions of size at most 3 are given by the coefficients of:
- s = m = 1 (indexed by the empty partition)
- s1 = m1
- s2 = m2 + m11
- s11 = m11
- s3 = m3 + m21 + m111
- s21 = m21 + 2m111
- s111 = m111.
Kostka (1882, pages 118-120) gave tables of these numbers for partitions of numbers up to 8.
References
- Kostka, C. (1882), "Über den Zusammenhang zwischen einigen Formen von symmetrischen Funktionen", Crelle's J., 93: 89–123
- Macdonald, I. G. (1995), Symmetric functions and Hall polynomials, Oxford Mathematical Monographs (2nd ed.), The Clarendon Press Oxford University Press, ISBN 978-0-19-853489-1, MR1354144
- Sagan, Bruce E. (2001) [1994], "Schur functions in algebraic combinatorics", Encyclopedia of Mathematics, EMS Press