Jump to content

Unextendible product basis: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
see also; stub notice
Added tags to the page using Page Curation (improve categories)
Line 1: Line 1:

In [[quantum mechanics]], an '''unextendible product basis''' is a set of orthogonal, non-[[Quantum entanglement|entangled]] [[quantum state|state vectors]] for a multipartite system, with the property that [[LOCC|local operations and classical communication]] are insufficient to distinguish one member of the set from the others. Because these states are product states and yet local measurements cannot tell them apart, they are sometimes said to exhibit "nonlocality without entanglement".<ref>{{Cite journal |last=Bennett |first=Charles H. |author-link=Charles H. Bennett (physicist) |last2=DiVincenzo |first2=David P. |author-link2=David DiVincenzo |last3=Fuchs |first3=Christopher A. |last4=Mor |first4=Tal |last5=Rains |first5=Eric |author-link5=Eric Rains |last6=Shor |first6=Peter W. |author-link6=Peter Shor |last7=Smolin |first7=John A. |author-link7=John A. Smolin |last8=Wootters |first8=William K. |author-link8=William Wootters |date=1999-02-01 |title=Quantum nonlocality without entanglement |url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.59.1070 |journal=Physical Review A |language=en |volume=59 |issue=2 |pages=1070–1091 |arxiv=quant-ph/9804053 |doi=10.1103/PhysRevA.59.1070}}</ref><ref>{{Cite journal |last=Bennett |first=Charles H. |author-link=Charles H. Bennett (physicist) |last2=DiVincenzo |first2=David P. |author-link2=David DiVincenzo |last3=Mor |first3=Tal |last4=Shor |first4=Peter W. |author-link4=Peter Shor |last5=Smolin |first5=John A. |author-link5=John Smolin |last6=Terhal |first6=Barbara M. |author-link6=Barbara Terhal |date=1999-06-28 |title=Unextendible Product Bases and Bound Entanglement |url=https://link.aps.org/doi/10.1103/PhysRevLett.82.5385 |journal=Physical Review Letters |language=en |volume=82 |issue=26 |pages=5385–5388 |arxiv=quant-ph/9808030 |doi=10.1103/PhysRevLett.82.5385}}</ref> They provide examples of non-entangled states that pass the [[Peres–Horodecki criterion]] for entanglement.<ref>{{Cite book |last=Bengtsson |first=Ingemar |title=Geometry of Quantum States: An Introduction to Quantum Entanglement |last2=Życzkowski |first2=Karol |author-link2=Karol Życzkowski |date= |publisher=Cambridge University Press |year=2017 |isbn=978-1-107-02625-4 |edition=2nd |location=Cambridge, UK |pages=458-460}}</ref>
In [[quantum mechanics]], an '''unextendible product basis''' is a set of orthogonal, non-[[Quantum entanglement|entangled]] [[quantum state|state vectors]] for a multipartite system, with the property that [[LOCC|local operations and classical communication]] are insufficient to distinguish one member of the set from the others. Because these states are product states and yet local measurements cannot tell them apart, they are sometimes said to exhibit "nonlocality without entanglement".<ref>{{Cite journal |last=Bennett |first=Charles H. |author-link=Charles H. Bennett (physicist) |last2=DiVincenzo |first2=David P. |author-link2=David DiVincenzo |last3=Fuchs |first3=Christopher A. |last4=Mor |first4=Tal |last5=Rains |first5=Eric |author-link5=Eric Rains |last6=Shor |first6=Peter W. |author-link6=Peter Shor |last7=Smolin |first7=John A. |author-link7=John A. Smolin |last8=Wootters |first8=William K. |author-link8=William Wootters |date=1999-02-01 |title=Quantum nonlocality without entanglement |url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.59.1070 |journal=Physical Review A |language=en |volume=59 |issue=2 |pages=1070–1091 |arxiv=quant-ph/9804053 |doi=10.1103/PhysRevA.59.1070}}</ref><ref>{{Cite journal |last=Bennett |first=Charles H. |author-link=Charles H. Bennett (physicist) |last2=DiVincenzo |first2=David P. |author-link2=David DiVincenzo |last3=Mor |first3=Tal |last4=Shor |first4=Peter W. |author-link4=Peter Shor |last5=Smolin |first5=John A. |author-link5=John Smolin |last6=Terhal |first6=Barbara M. |author-link6=Barbara Terhal |date=1999-06-28 |title=Unextendible Product Bases and Bound Entanglement |url=https://link.aps.org/doi/10.1103/PhysRevLett.82.5385 |journal=Physical Review Letters |language=en |volume=82 |issue=26 |pages=5385–5388 |arxiv=quant-ph/9808030 |doi=10.1103/PhysRevLett.82.5385}}</ref> They provide examples of non-entangled states that pass the [[Peres–Horodecki criterion]] for entanglement.<ref>{{Cite book |last=Bengtsson |first=Ingemar |title=Geometry of Quantum States: An Introduction to Quantum Entanglement |last2=Życzkowski |first2=Karol |author-link2=Karol Życzkowski |date= |publisher=Cambridge University Press |year=2017 |isbn=978-1-107-02625-4 |edition=2nd |location=Cambridge, UK |pages=458-460}}</ref>


Line 8: Line 9:
{{reflist}}{{Quantum-stub}}
{{reflist}}{{Quantum-stub}}
[[Category:Quantum information theory]]
[[Category:Quantum information theory]]
{{improve categories|date=December 2024}}

Revision as of 06:00, 12 December 2024

In quantum mechanics, an unextendible product basis is a set of orthogonal, non-entangled state vectors for a multipartite system, with the property that local operations and classical communication are insufficient to distinguish one member of the set from the others. Because these states are product states and yet local measurements cannot tell them apart, they are sometimes said to exhibit "nonlocality without entanglement".[1][2] They provide examples of non-entangled states that pass the Peres–Horodecki criterion for entanglement.[3]

See also

References

  1. ^ Bennett, Charles H.; DiVincenzo, David P.; Fuchs, Christopher A.; Mor, Tal; Rains, Eric; Shor, Peter W.; Smolin, John A.; Wootters, William K. (1999-02-01). "Quantum nonlocality without entanglement". Physical Review A. 59 (2): 1070–1091. arXiv:quant-ph/9804053. doi:10.1103/PhysRevA.59.1070.
  2. ^ Bennett, Charles H.; DiVincenzo, David P.; Mor, Tal; Shor, Peter W.; Smolin, John A.; Terhal, Barbara M. (1999-06-28). "Unextendible Product Bases and Bound Entanglement". Physical Review Letters. 82 (26): 5385–5388. arXiv:quant-ph/9808030. doi:10.1103/PhysRevLett.82.5385.
  3. ^ Bengtsson, Ingemar; Życzkowski, Karol (2017). Geometry of Quantum States: An Introduction to Quantum Entanglement (2nd ed.). Cambridge, UK: Cambridge University Press. pp. 458–460. ISBN 978-1-107-02625-4.