JP-10 (fuel): Difference between revisions
No edit summary |
No edit summary Tags: Reverted Mobile edit Mobile web edit |
||
Line 1: | Line 1: | ||
{{short description| |
{{short description|let fuel}} |
||
'''JP-10 fuel''' - (Jet Propellant 10), is a [[jet fuel]], specified and used widely in [[Military–industrial complex|military]] applications but it is not a [[kerosene]] based fuel. It is a [[gas turbine]] fuel for [[missile]]s.<ref name="CRC, Aviation Fuel Properties, JP-10" >{{Cite book |
'''JP-10 fuel''' - (Jet Propellant 10), is a [[jet fuel]], specified and used widely in [[Military–industrial complex|military]] applications but it is not a [[kerosene]] based fuel. It is a [[gas turbine]] fuel for [[missile]]s.<ref name="CRC, Aviation Fuel Properties, JP-10" >{{Cite book |
||
| title=Aviation Fuel Properties |
| title=Aviation Fuel Properties |
Revision as of 22:22, 17 February 2024
JP-10 fuel - (Jet Propellant 10), is a jet fuel, specified and used widely in military applications but it is not a kerosene based fuel. It is a gas turbine fuel for missiles.[1] It contains mainly exo-tetrahydrodicyclopentadiene (a synthetic fuel), and adamantane. However, it is usually classed as a single component fuel, as well as a hydrocarbon.[2] It is produced by catalytic hydrogenation of dicyclopentadiene and then isomerization. It superseded JP-9 because of a lower temperature service limit.[1] It is also used by missiles (Tomahawk, Tsirkon).[3]
Russian equivalent is called detsilin.
Uses
It absorbs heat energy and so is endothermic with a relatively high density of 940 kg/m3. It has a low freezing point of less than −110 °C (−166 °F) and the flash point is 130 °F (54 °C). The high energy density of 39.6 MJ/m3 makes it ideal for military aerospace applications - its primary use. The ignition and burn chemistry has been extensively studied.[4][5][6] The exo isomer also has a low freezing point.[7][8] Its other properties have also been studied extensively.[9][10][11][12][13]
Even though its uses are mainly for the military, the relatively high cost has meant research has been undertaken to find lower costs routes including the use of cellulosic materials.[14]
Further research
Current and past areas of research focus on:
- The pyrolysis and kinetics of the fuel.[15][16]
- Catalytic addition of nanoparticles such as those based on cerium(IV) oxide.[17]
- Catalysis for the endo to exo isomerisation.[18][19]
- Use of additives in JP-10 for various enhancements.[20][21]
References
- ^ a b Aviation Fuel Properties (PDF). Coordinating Research Council. 1983. p. 3. CRC Report Nº 530. Archived from the original (PDF) on 2012-07-22. Retrieved 2023-12-06.
- ^ Ciccarelli, G.; Card, J. (February 2006). "Detonation in Mixtures of JP-10 Vapor and Air". AIAA Journal. 44 (2): 362–367. doi:10.2514/1.18582. ISSN 0001-1452.
- ^ Coggeshall, Katharine. "Revolutionizing Tomahawk fuel". Los Alamos National Laboratory. Archived from the original on 21 May 2020. Retrieved 20 May 2020.
- ^ "Exo-tricyclo[5.2.1.0(2.6)]decane". webbook.nist.gov. Retrieved 2023-10-03.
- ^ Li, S. C.; Varatharajan, B.; Williams, F. A. (December 2001). "Chemistry of JP-10 Ignition". AIAA Journal. 39 (12): 2351–2356. doi:10.2514/2.1241. ISSN 0001-1452.
- ^ Davidson, D. F.; Horning, D. C.; Herbon, J. T.; Hanson, R. K. (2000-01-01). "Shock tube measurements of JP-10 ignition". Proceedings of the Combustion Institute. 28 (2): 1687–1692. doi:10.1016/S0082-0784(00)80568-8. ISSN 1540-7489.
- ^ Herbinet, Olivier; Sirjean, Baptiste; Bounaceur, Roda; Fournet, René; Battin-Leclerc, Frédérique; Scacchi, Gérard; Marquaire, Paul-Marie (2006-10-01). "Primary Mechanism of the Thermal Decomposition of Tricyclodecane". The Journal of Physical Chemistry A. 110 (39): 11298–11314. Bibcode:2006JPCA..11011298H. doi:10.1021/jp0623802. ISSN 1089-5639. PMID 17004739.
- ^ Wu, Junjun; Gao, Lu Gem; Ning, Hongbo; Ren, Wei; Truhlar, Donald G. (2020-06-01). "Direct dynamics of a large complex hydrocarbon reaction system: The reaction of OH with exo-tricyclodecane (the main component of Jet Propellant-10)". Combustion and Flame. 216: 82–91. doi:10.1016/j.combustflame.2020.02.019. ISSN 0010-2180. S2CID 216384271.
- ^ "Exo-tricyclo[5.2.1.0(2.6)]decane". Cheméo. Retrieved 2023-10-03.
- ^ Seiser, R.; Niemann, U.; Seshadri, K. (2011-01-01). "Experimental study of combustion of n-decane and JP-10 in non-premixed flows". Proceedings of the Combustion Institute. 33 (1): 1045–1052. doi:10.1016/j.proci.2010.06.078. ISSN 1540-7489.
- ^ Tao, Yujie; Xu, Rui; Wang, Kun; Shao, Jiankun; Johnson, Sarah E.; Movaghar, Ashkan; Han, Xu; Park, Ji-Woong; Lu, Tianfeng; Brezinsky, Kenneth; Egolfopoulos, Fokion N.; Davidson, David F.; Hanson, Ronald K.; Bowman, Craig T.; Wang, Hai (2018-12-01). "A Physics based approach to modeling real fuel combustion chemistry III Reaction kinetic model of JP10". Combustion and Flame. 198: 466–476. doi:10.1016/j.combustflame.2018.08.022. ISSN 0010-2180. S2CID 104745782.
- ^ Li, Heng; Liu, Guozhu; Jiang, Rongpei; Wang, Li; Zhang, Xiangwen (2015-05-01). "Experimental and kinetic modeling study of exo-TCD pyrolysis under low pressure". Combustion and Flame. 162 (5): 2177–2190. doi:10.1016/j.combustflame.2015.01.015. ISSN 0010-2180.
- ^ Goh, K. H. H.; Geipel, P.; Hampp, F.; Lindstedt, R. P. (2013-01-01). "Regime transition from premixed to flameless oxidation in turbulent JP-10 flames". Proceedings of the Combustion Institute. 34 (2): 3311–3318. doi:10.1016/j.proci.2012.06.173. ISSN 1540-7489.
- ^ Li, Guangyi; Hou, Baolin; Wang, Aiqin; Xin, Xuliang; Cong, Yu; Wang, Xiaodong; Li, Ning; Zhang, Tao (2019-08-26). "Making JP‐10 Superfuel Affordable with a Lignocellulosic Platform Compound". Angewandte Chemie International Edition. 58 (35): 12154–12158. doi:10.1002/anie.201906744. ISSN 1433-7851.
- ^ Chenoweth, Kimberly; van Duin, Adri C. T.; Dasgupta, Siddharth; Goddard III, William A. (2009-03-05). "Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel". The Journal of Physical Chemistry A. 113 (9): 1740–1746. doi:10.1021/jp8081479. ISSN 1089-5639.
- ^ Zhong, Bei-jing; Zeng, Zhao-mei; Zhang, Hou-zhen (2022-03-15). "An experimental and kinetic modeling study of JP-10 combustion". Fuel. 312: 122900. doi:10.1016/j.fuel.2021.122900. ISSN 0016-2361.
- ^ Van Devener, Brian; Anderson, Scott L. (2006-09-01). "Breakdown and Combustion of JP-10 Fuel Catalyzed by Nanoparticulate CeO 2 and Fe 2 O 3". Energy & Fuels. 20 (5): 1886–1894. doi:10.1021/ef060064g. ISSN 0887-0624.
- ^ Huang, Ming-Yu; Wu, Jung-Chung; Shieu, Fuh-Sheng; Lin, Jiang-Jen (2011-03-01). "Preparation of high energy fuel JP-10 by acidity-adjustable chloroaluminate ionic liquid catalyst". Fuel. 90 (3): 1012–1017. doi:10.1016/j.fuel.2010.11.041. ISSN 0016-2361.
- ^ Xing, Enhui; Mi, Zhentao; Xin, Chengwei; Wang, Li; Zhang, Xiangwen (2005-04-20). "Endo- to exo-isomerization of tetrahydrodicyclopentadiene catalyzed by commercially available zeolites". Journal of Molecular Catalysis A: Chemical. 231 (1): 161–167. doi:10.1016/j.molcata.2005.01.015. ISSN 1381-1169.
- ^ E, Xiu-tian-feng; Pan, Lun; Zhang, Xiangwen; Zou, Ji-Jun (2020-09-15). "Influence of quadricyclane additive on ignition and combustion properties of high-density JP-10 fuel". Fuel. 276: 118047. doi:10.1016/j.fuel.2020.118047. ISSN 0016-2361.
- ^ Chung, H. S.; Chen, C. S. H.; Kremer, R. A.; Boulton, J. R.; Burdette, G. W. (1999-05-01). "Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels". Energy & Fuels. 13 (3): 641–649. doi:10.1021/ef980195k. ISSN 0887-0624.