Jump to content

Isotopes of sodium: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Edit
Tags: Reverted Visual edit Mobile edit Mobile web edit
Undid revision 1110646144 by 85.109.136.232 (talk) why?
Line 2: Line 2:
{{more footnotes needed|date=August 2017}}
{{more footnotes needed|date=August 2017}}
{{infobox sodium isotopes}}
{{infobox sodium isotopes}}
There are 22 isotopes of [[sodium]]<ref name="Riken51" /> (11Na), ranging from {{chem|17|Na}} to {{chem|39|Na}},<ref name="Riken51">{{cite report |last=Ahn |first=D.S. |display-authors=etal |title=New isotope of <sup>39</sup>Na and the neutron dripline of neon isotopes using a 345 MeV/nucleon <sup>48</sup>Ca beam |series=RIKEN Accelerator Progress Reports |volume=51 |pages=82 |date=2018 |url=https://www.nishina.riken.jp/researcher/APR/APR051/pdf/82.pdf}}</ref> and two [[nuclear isomer|isomers]] ({{chem|22m|Na}} and {{chem|24m|Na}}). {{chem|23|Na}} is the only [[stable nuclide|stable]] (and the only [[primordial nuclide|primordial]]) isotope. It is considered a [[monoisotopic element]] and it has a [[standard atomic weight]] of {{val|22.98976928|(2)}}. Sodium has two [[radioactive]] [[Cosmogenic nuclide|cosmogenic]] isotopes ({{chem|22|Na}}, with a [[half-life]] of {{val|2.6019|(6)|u=years}};{{refn|group=nb|name=NUBASE2020 tropical year|Note that NUBASE2020 uses the [[tropical year]] to convert between years and other units of time, not the [[Gregorian year]]. The relationship between years and other time units in NUBASE2020 is as follows: {{nowrap|1=1 y = 365.2422 d = 31 556 926 s}} }} and {{chem|link=Sodium-24|24|Na}}, with a half-life of {{val|14.9560|(15)|u=hours}}). With the exception of those two isotopes, all other isotopes have [[half-life|half-lives]] under a minute, most under a second. The shortest-lived is {{chem|18|Na}}, with a half-life of {{val|1.3|(4)|e=−21}} seconds<ref name=":0" />.
There are 22 isotopes of [[sodium]] (<sub>11</sub>Na), ranging from {{chem|17|Na}} to {{chem|39|Na}},<ref name="Riken51">{{cite report |last=Ahn |first=D.S. |display-authors=etal |title=New isotope of <sup>39</sup>Na and the neutron dripline of neon isotopes using a 345 MeV/nucleon <sup>48</sup>Ca beam |series=RIKEN Accelerator Progress Reports |volume=51 |pages=82 |date=2018 |url=https://www.nishina.riken.jp/researcher/APR/APR051/pdf/82.pdf}}</ref> and two [[nuclear isomer|isomers]] ({{chem|22m|Na}} and {{chem|24m|Na}}). {{chem|23|Na}} is the only [[stable nuclide|stable]] (and the only [[primordial nuclide|primordial]]) isotope. It is considered a [[monoisotopic element]] and it has a [[standard atomic weight]] of {{val|22.98976928|(2)}}. Sodium has two [[radioactive]] [[Cosmogenic nuclide|cosmogenic]] isotopes ({{chem|22|Na}}, with a [[half-life]] of {{val|2.6019|(6)|u=years}};{{refn|group=nb|name=NUBASE2020 tropical year|Note that NUBASE2020 uses the [[tropical year]] to convert between years and other units of time, not the [[Gregorian year]]. The relationship between years and other time units in NUBASE2020 is as follows: {{nowrap|1=1 y = 365.2422 d = 31 556 926 s}} }} and {{chem|link=Sodium-24|24|Na}}, with a half-life of {{val|14.9560|(15)|u=hours}}). With the exception of those two isotopes, all other isotopes have [[half-life|half-lives]] under a minute, most under a second. The shortest-lived is {{chem|18|Na}}, with a half-life of {{val|1.3|(4)|e=−21}} seconds.


Acute neutron radiation exposure (e.g., from a nuclear [[criticality accident]]) converts some of the stable {{chem|23|Na}} in human blood plasma to {{chem|24|Na}}. By measuring the concentration of this isotope, the neutron radiation dosage to the victim can be computed.
Acute neutron radiation exposure (e.g., from a nuclear [[criticality accident]]) converts some of the stable {{chem|23|Na}} in human blood plasma to {{chem|24|Na}}. By measuring the concentration of this isotope, the neutron radiation dosage to the victim can be computed.
Line 382: Line 382:


==Sodium-24==
==Sodium-24==
Sodium-24 is radioactive and can be created from common sodium-23 by [[neutron activation]]. With a half-life of {{val|14.9560|(15)|u=hours}}, {{chem|24|Na}} decays to {{chem|link=Isotopes of magnesium|24|Mg}} by emission of an [[electron]] and two [[gamma ray]]s.<ref name=":0">{{cite web|url=https://www.britannica.com/science/sodium-24|title=sodium-24|publisher=[[Encyclopædia Britannica]]}}</ref><ref name="neutron-dose-assessment"/>
Sodium-24 is radioactive and can be created from common sodium-23 by [[neutron activation]]. With a half-life of {{val|14.9560|(15)|u=hours}}, {{chem|24|Na}} decays to {{chem|link=Isotopes of magnesium|24|Mg}} by emission of an [[electron]] and two [[gamma ray]]s.<ref>{{cite web|url=https://www.britannica.com/science/sodium-24|title=sodium-24|publisher=[[Encyclopædia Britannica]]}}</ref><ref name="neutron-dose-assessment"/>


Exposure of the human body to intense [[neutron radiation]] creates {{chem|24|Na}} in the [[blood plasma]]. Measurements of its quantity can be done to determine the absorbed radiation dose of a patient.<ref name="neutron-dose-assessment">{{cite journal|title=Neutron dose assessment using samples of human blood and hair |first1=Daniela |last1=Ekendahl |first2=Peter |last2=Rubovič |first3=Pavel |last3=Žlebčík |first4=Ivan |last4=Hupka |first5=Ondřej |last5=Huml |first6=Věra |last6=Bečková |first7=Helena |last7=Malá |date=7 November 2019 |doi=10.1093/rpd/ncz202|journal=Radiation Protection Dosimetry|volume=186|issue=2–3|pages=202–205}}</ref> This can be used to determine the type of medical treatment required.
Exposure of the human body to intense [[neutron radiation]] creates {{chem|24|Na}} in the [[blood plasma]]. Measurements of its quantity can be done to determine the absorbed radiation dose of a patient.<ref name="neutron-dose-assessment">{{cite journal|title=Neutron dose assessment using samples of human blood and hair |first1=Daniela |last1=Ekendahl |first2=Peter |last2=Rubovič |first3=Pavel |last3=Žlebčík |first4=Ivan |last4=Hupka |first5=Ondřej |last5=Huml |first6=Věra |last6=Bečková |first7=Helena |last7=Malá |date=7 November 2019 |doi=10.1093/rpd/ncz202|journal=Radiation Protection Dosimetry|volume=186|issue=2–3|pages=202–205}}</ref> This can be used to determine the type of medical treatment required.

Revision as of 17:23, 16 September 2022

Isotopes of sodium (11Na)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
22Na trace 2.6019 y β+ 22Ne
23Na 100% stable
24Na trace 14.9560 h β 24Mg
Standard atomic weight Ar°(Na)

There are 22 isotopes of sodium (11Na), ranging from 17
Na
to 39
Na
,[4] and two isomers (22m
Na
and 24m
Na
). 23
Na
is the only stable (and the only primordial) isotope. It is considered a monoisotopic element and it has a standard atomic weight of 22.98976928(2). Sodium has two radioactive cosmogenic isotopes (22
Na
, with a half-life of 2.6019(6) years;[nb 1] and 24
Na
, with a half-life of 14.9560(15) h). With the exception of those two isotopes, all other isotopes have half-lives under a minute, most under a second. The shortest-lived is 18
Na
, with a half-life of 1.3(4)×10−21 seconds.

Acute neutron radiation exposure (e.g., from a nuclear criticality accident) converts some of the stable 23
Na
in human blood plasma to 24
Na
. By measuring the concentration of this isotope, the neutron radiation dosage to the victim can be computed.

22
Na
is a positron-emitting isotope with a remarkably long half-life. It is used to create test-objects and point-sources for positron emission tomography.

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da)[5]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Isotopic
abundance
Excitation energy
17
Na
11 6 17.037270(60) p 16
Ne
(1/2+)
18
Na
11 7 18.02688(10) 1.3(4) zs p=?[n 8] 17
Ne
1−#
19
Na
11 8 19.013880(11) > 1 as p 18
Ne
(5/2+)
20
Na
11 9 20.0073543(12) 447.9(2.3) ms β+ (75.0(4)%) 20
Ne
2+
β+α (25.0(4)%) 16
O
21
Na
11 10 20.99765446(5) 22.4550(54) s β+ 21
Ne
3/2+
22
Na
11 11 21.99443742(18) 2.6019(6) y[nb 1] e+ (90.57(8)%) 22
Ne
3+ Trace[n 9]
ε (9.43(6)%) 22
Ne
22m1
Na
583.05(10) keV 243(2) ns IT 22
Na
1+
22m2
Na
657.00(14) keV 19.6(7) ps IT 22
Na
0+
23
Na
11 12 22.9897692820(19) Stable 3/2+ 1
24
Na
11 13 23.990963012(18) 14.9560(15) h β 24
Mg
4+ Trace[n 9]
24m
Na
472.2074(8) keV 20.18(10) ms IT (99.95%) 24
Na
1+
β (0.05%) 24
Mg
25
Na
11 14 24.9899540(13) 59.1(6) s β 25
Mg
5/2+
26
Na
11 15 25.992635(4) 1.07128(25) s β 26
Mg
3+
26m
Na
82.4(4) keV 4.35(16) μs IT 26
Na
1+
27
Na
11 16 26.994076(4) 301(6) ms β (99.902(24)%) 27
Mg
5/2+
βn (0.098(24)%) 26
Mg
28
Na
11 17 27.998939(11) 33.1(1.3) ms β (99.42(12)%) 28
Mg
1+
βn (0.58(12)%) 27
Mg
29
Na
11 18 29.002877(8) 43.2(4) ms β (78%) 29
Mg
3/2+
βn (22(3)%) 28
Mg
β2n ?[n 10] 27
Mg
 ?
30
Na
11 19 30.009098(5) 45.9(7) ms β (70.2(2.2)%) 30
Mg
2+
βn (28.6(2.2)%) 29
Mg
β2n (1.24(19)%) 28
Mg
βα (5.5(2)%×10−5) 26
Ne
31
Na
11 20 31.013147(15) 16.8(3) ms β (> 63.2(3.5)%) 31
Mg
3/2+
βn (36.0(3.5)%) 30
Mg
β2n (0.73(9)%) 29
Mg
β3n (< 0.05%) 28
Mg
32
Na
11 21 32.020010(40) 12.9(3) ms β (66.4(6.2)%) 32
Mg
(3−)
βn (26(6)%) 31
Mg
β2n (7.6(1.5)%) 30
Mg
33
Na
11 22 33.02553(48) 8.2(4) ms βn (47(6)%) 32
Mg
(3/2+)
β (40.0(6.7)%) 33
Mg
β2n (13(3)%) 31
Mg
34
Na
11 23 34.03401(64) 5.5(1.0) ms β2n (~50%) 32
Mg
1+
β (~35%) 34
Mg
βn (~15%) 33
Mg
35
Na
11 24 35.04061(72)# 1.5(5) ms β 35
Mg
3/2+#
βn ?[n 10] 34
Mg
 ?
β2n ?[n 10] 33
Mg
 ?
36
Na
11 25 36.04928(74)# < 180 ns n ?[n 10] 35
Na
 ?
37
Na
11 26 37.05704(74)# 1# ms [> 1.5 μs] β ?[n 10] 37
Mg
 ?
3/2+#
βn ?[n 10] 36
Mg
 ?
β2n ?[n 10] 35
Mg
 ?
38
Na
11 27 38.06646(77)# < 400 ns n ?[n 10] 37
Na
 ?
39
Na
[4]
11 28 39.07512(80)# 1# ms [> 400 ns] β ?[n 10] 39
Mg
 ?
3/2+#
βn ?[n 10] 38
Mg
 ?
β2n ?[n 10] 37
Mg
 ?
This table header & footer:
  1. ^ mNa – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Decay mode shown has been observed, but its intensity is not known experimentally.
  9. ^ a b Cosmogenic nuclide
  10. ^ a b c d e f g h i j k Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

Sodium-22

Sodium-22 is a radioactive isotope of sodium, undergoing positron emission to 22
Ne
with a half-life of 2.6019(6) years. 22
Na
is being investigated as an efficient generator of "cold positrons" (antimatter) to produce muons for catalyzing fusion of deuterium. It is also commonly used as a positron source in positron annihilation spectroscopy.[6]

Sodium-24

Sodium-24 is radioactive and can be created from common sodium-23 by neutron activation. With a half-life of 14.9560(15) h, 24
Na
decays to 24
Mg
by emission of an electron and two gamma rays.[7][8]

Exposure of the human body to intense neutron radiation creates 24
Na
in the blood plasma. Measurements of its quantity can be done to determine the absorbed radiation dose of a patient.[8] This can be used to determine the type of medical treatment required.

When sodium is used as coolant in fast breeder reactors, 24
Na
is created, which makes the coolant radioactive. When the 24
Na
decays, it causes a buildup of magnesium in the coolant. Since the half life is short, the 24
Na
portion of the coolant ceases to be radioactive within a few days after removal from the reactor. Leakage of the hot sodium from the primary loop may cause radioactive fires,[9] as it can ignite in contact with air (and explodes in contact with water). For this reason the primary cooling loop is within a containment vessel.

Sodium has been proposed as a casing for a salted bomb, as it would convert to 24
Na
and produce intense gamma-ray emissions for a few days.[10][11]

Notes

  1. ^ a b Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: 1 y = 365.2422 d = 31 556 926 s

References

  1. ^ a b c d Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Sodium". CIAAW. 2005.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ a b Ahn, D.S.; et al. (2018). New isotope of 39Na and the neutron dripline of neon isotopes using a 345 MeV/nucleon 48Ca beam (PDF) (Report). RIKEN Accelerator Progress Reports. Vol. 51. p. 82.
  5. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. ^ Saro, Matúš; Kršjak, Vladimír; Petriska, Martin; Slugeň, Vladimír (2019-07-29). "Sodium-22 source contribution determination in positron annihilation measurements using GEANT4". AIP Conference Proceedings. 2131 (1): 020039. doi:10.1063/1.5119492. ISSN 0094-243X.
  7. ^ "sodium-24". Encyclopædia Britannica.
  8. ^ a b Ekendahl, Daniela; Rubovič, Peter; Žlebčík, Pavel; Hupka, Ivan; Huml, Ondřej; Bečková, Věra; Malá, Helena (7 November 2019). "Neutron dose assessment using samples of human blood and hair". Radiation Protection Dosimetry. 186 (2–3): 202–205. doi:10.1093/rpd/ncz202.
  9. ^ Unusual occurrences during LMFR operation, Proceedings of a Technical Committee meeting held in Vienna, 9–13 November 1998, IAEA. Pages 84, 122.
  10. ^ "Science: fy for Doomsday". Time. November 24, 1961. Archived from the original on March 14, 2016.
  11. ^ Clark, W. H. (1961). "Chemical and Thermonuclear Explosives". Bulletin of the Atomic Scientists. 17 (9): 356–360. doi:10.1080/00963402.1961.11454268.