Hofstadter points: Difference between revisions
m →Hofstadter zero- and one-points: "there" changed to "these" |
|||
Line 17: | Line 17: | ||
The trilinear coordinates of the vertices of the Hofstadter ''r''-triangle are given below: |
The [[trilinear coordinates]] of the vertices of the Hofstadter ''r''-triangle are given below: |
||
:''A''(''r'') = ( 1 , sin ''rB'' / sin (1 − ''r'')''B'' , sin ''rC'' / sin (1 − ''r'')''C'' ) |
:''A''(''r'') = ( 1 , sin ''rB'' / sin (1 − ''r'')''B'' , sin ''rC'' / sin (1 − ''r'')''C'' ) |
Revision as of 01:25, 8 May 2022
In triangle geometry, a Hofstadter point is a special point associated with every plane triangle. In fact there are several Hofstadter points associated with a triangle. All of them are triangle centers. Two of them, the Hofstadter zero-point and Hofstadter one-point, are particularly interesting.[1] They are two transcendental triangle centers. Hofstadter zero-point is the center designated as X(360) and the Hofstafter one-point is the center denoted as X(359) in Clark Kimberling's Encyclopedia of Triangle Centers. The Hofstadter zero-point was discovered by Douglas Hofstadter in 1992.[1]
Hofstadter triangles
Let ABC be a given triangle. Let r be a positive real constant.
Rotate the line segment BC about B through an angle rB towards A and let LBC be the line containing this line segment. Next rotate the line segment BC about C through an angle rC towards A. Let L'BC be the line containing this line segment. Let the lines LBC and L'BC intersect at A(r). In a similar way the points B(r) and C(r) are constructed. The triangle whose vertices are A(r), B(r), C(r) is the Hofstadter r-triangle (or, the r-Hofstadter triangle) of triangle ABC.[2][1]
Special case
- The Hofstadter 1/3-triangle of triangle ABC is the first Morley's triangle of triangle ABC. Morley's triangle is always an equilateral triangle.
- The Hofstadter 1/2-triangle is simply the incentre of the triangle.
Trilinear coordinates of the vertices of Hofstadter triangles
The trilinear coordinates of the vertices of the Hofstadter r-triangle are given below:
- A(r) = ( 1 , sin rB / sin (1 − r)B , sin rC / sin (1 − r)C )
- B(r) = ( sin rA / sin (1 − r)A , 1 , sin rC / sin (1 − r)C )
- C(r) = ( sin rA / sin (1 − r)A , sin (1 − r)B / sin rB , 1 )
Hofstadter points
For a positive real constant r > 0, let A(r) B(r) C(r) be the Hofstadter r-triangle of triangle ABC. Then the lines AA(r), BB(r), CC(r) are concurrent.[3] The point of concurrence is the Hofstdter r-point of triangle ABC.
Trilinear coordinates of Hofstadter r-point
The trilinear coordinates of Hofstadter r-point are given below.
- ( sin rA / sin ( A − rA) , sin rB / sin ( B − rB ) , sin rC / sin ( C − rC) )
Hofstadter zero- and one-points
The trilinear coordinates of these points cannot be obtained by plugging in the values 0 and 1 for r in the expressions for the trilinear coordinates for the Hofstdter r-point.
- Hofstadter zero-point is the limit of the Hofstadter r-point as r approaches zero.
- Hofstadter one-point is the limit of the Hofstadter r-point as r approaches one.
Trilinear coordinates of Hofstadter zero-point
- = lim r → 0 ( sin rA / sin ( A − rA) , sin rB / sin ( B − rB ) , sin rC / sin ( C − rC) )
- = lim r → 0 ( sin rA / r sin ( A − rA) , sin rB / r sin ( B − rB ) , sin rC / r sin ( C − rC) )
- = lim r → 0 ( A sin rA / rA sin ( A − rA) , B sin rB / rB sin ( B − rB ) , C sin rC / rC sin ( C − rC) )
- = ( A / sin A , B / sin B , C / sin C ) ), as lim r → 0 sin rA / rA = 1, etc.
- = ( A / a, B / b, C / c )
Trilinear coordinates of Hofstadter one-point
- = lim r → 1 ( sin rA / sin ( A − rA) , sin rB / sin ( B − rB ) , sin rC / sin ( C − rC) )
- = lim r → 1 ( ( 1 − r ) sin rA / sin ( A − rA) , ( 1 - r ) sin rB / sin ( B − rB ) , ( 1 − r )sin rC / sin ( C − rC) )
- = lim r → 1 ( ( 1 − r ) A sin rA / A sin ( A − rA) , ( 1 − r ) B sin rB / B sin ( B − rB ) , ( 1 − r ) C sin rC / C sin ( C − rC) )
- = ( sin A / A , sin B / B , sin C / C ) ) as lim r → 1 ( 1 − r ) A / sin ( A − rA ) = 1, etc.
- = ( a / A, b / B, c / C )
References
- ^ a b c Kimberling, Clark. "Hofstadter points". Retrieved 11 May 2012.
- ^ Weisstein, Eric W. "Hofstadter Triangle". MathWorld--A Wolfram Web Resource. Retrieved 11 May 2012.
- ^ C. Kimberling (1994). "Hofstadter points". Nieuw Archief voor Wiskunde. 12: 109–114.