Jump to content

Arsenidostannate: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Alter: title, pages. Add: bibcode, arxiv, s2cid, doi, osti, pmid, authors 1-1. Removed parameters. Formatted dashes. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Graeme Bartlett | #UCB_toolbar
ce
 
(11 intermediate revisions by 7 users not shown)
Line 1: Line 1:
'''Arsenidostanates''' are chemical compounds that contain anions with arsenic bonded to tin. They are in the category of tetrelarsenides, pnictidostancates, or tetrelpnictides.
'''Arsenidostanates''' are chemical compounds that contain anions with arsenic bonded to tin. They are in the category of tetrelarsenides, pnictidostancates, or tetrelpnictides.


They are distinct from arsenide stannides such as [[palarstanide]], (Pd<sub>8</sub>(Sn,As)<sub>3</sub>) where the cation charge exceeds that on the tin or arsenic.<ref>{{cite web |title=Palarstanide Mineral Data |url=http://webmineral.com/data/Palarstanide.shtml |website=webmineral.com |access-date=8 December 2021}}</ref> Other minerals that contain arsenic and tin are [[erniggliite]]<ref>{{cite web |title=Erniggliite Mineral Data |url=http://webmineral.com/data/Erniggliite.shtml |website=webmineral.com |access-date=8 December 2021}}</ref> and [[coiraite]].<ref>{{cite web |title=Coiraite Mineral Data |url=http://webmineral.com/data/Coiraite.shtml |website=webmineral.com |access-date=8 December 2021}}</ref>
They are distinct from arsenide stannides such as [[palarstanide]], ({{chem2|Pd8(Sn,As)3}}) where the cation charge exceeds that on the tin or arsenic.<ref>{{Cite web |title=Palarstanide Mineral Data |url=http://webmineral.com/data/Palarstanide.shtml |access-date=8 December 2021 |website=webmineral.com}}</ref> Other minerals that contain arsenic and tin are [[erniggliite]]<ref>{{Cite web |title=Erniggliite Mineral Data |url=http://webmineral.com/data/Erniggliite.shtml |access-date=8 December 2021 |website=webmineral.com}}</ref> and [[coiraite]].<ref>{{Cite web |title=Coiraite Mineral Data |url=http://webmineral.com/data/Coiraite.shtml |access-date=8 December 2021 |website=webmineral.com}}</ref>


{| class="wikitable"
{| class="wikitable"
Line 21: Line 21:
|Li<sub>1–''x''</sub>Sn<sub>2+''x''</sub>As<sub>2</sub>, 0.2 < ''x'' < 0.4
|Li<sub>1–''x''</sub>Sn<sub>2+''x''</sub>As<sub>2</sub>, 0.2 < ''x'' < 0.4
|
|
|trigonal
|
|''R''{{overbar|3}}''m''
|''R''{{overbar|3}}''m''
|a=3.991-4.0244 c=25.592-25.632 Z=3
|a=3.991-4.0244 c=25.592-25.632 Z=3
Line 27: Line 27:
|
|
|
|
|<ref>{{Cite journal|last1=Lee|first1=Kathleen|last2=Kaseman|first2=Derrick|last3=Sen|first3=Sabyasachi|last4=Hung|first4=Ivan|last5=Gan|first5=Zhehong|last6=Gerke|first6=Birgit|last7=Pöttgen|first7=Rainer|last8=Feygenson|first8=Mikhail|last9=Neuefeind|first9=Jörg|last10=Lebedev|first10=Oleg I.|last11=Kovnir|first11=Kirill|date=2015-03-18|title=Intricate Short-Range Ordering and Strongly Anisotropic Transport Properties of Li 1– x Sn 2+ x As 2|url=https://pubs.acs.org/doi/10.1021/jacs.5b00237|journal=Journal of the American Chemical Society|language=en|volume=137|issue=10|pages=3622–3630|doi=10.1021/jacs.5b00237|pmid=25702752|osti=1334418|issn=0002-7863}}</ref>
|<ref>{{Cite journal |last=Lee |first=Kathleen |last2=Kaseman |first2=Derrick |last3=Sen |first3=Sabyasachi |last4=Hung |first4=Ivan |last5=Gan |first5=Zhehong |last6=Gerke |first6=Birgit |last7=Pöttgen |first7=Rainer |last8=Feygenson |first8=Mikhail |last9=Neuefeind |first9=Jörg |last10=Lebedev |first10=Oleg I. |last11=Kovnir |first11=Kirill |date=2015-03-18 |title=Intricate Short-Range Ordering and Strongly Anisotropic Transport Properties of Li 1– x Sn 2+ x As 2 |url=https://pubs.acs.org/doi/10.1021/jacs.5b00237 |journal=Journal of the American Chemical Society |language=en |volume=137 |issue=10 |pages=3622–3630 |doi=10.1021/jacs.5b00237 |issn=0002-7863 |osti=1334418 |pmid=25702752}}</ref>
|-
|-
|
|
Line 33: Line 33:
|
|
|
|
|I4<sub>1</sub>/''acd''
|''I''4<sub>1</sub>/''acd''
|a 14.166, c=21.191, Z = 32
|a=14.166, c=21.191, Z = 32
|
|
|
|
|metallic grey
|metallic grey
|<ref>{{Cite journal|last1=Asbrand|first1=Matthias|last2=Eisenmann|first2=Brigitte|date=1993|title=Na2[SnAs2], the first Zintl phase with a [SnAs2] framework based on adamantane analogous [Sn4As10] units|url=ISSN: 0932-0776|journal=Zeitschrift fuer Naturforschung, B: Chemical Sciences|volume=48|pages=452–456|doi=10.1515/znb-1993-0409|s2cid=95169843}}</ref>
|<ref>{{Cite journal |last=Asbrand |first=Matthias |last2=Eisenmann |first2=Brigitte |date=1993 |title=Na2[SnAs2], the first Zintl phase with a [SnAs2] framework based on adamantane analogous [Sn4As10] units |journal=Zeitschrift für Naturforschung B |volume=48 |pages=452–456 |doi=10.1515/znb-1993-0409 |issn=0932-0776 |s2cid=95169843 |doi-access=free}}</ref>
|-
|-
|
|
Line 49: Line 49:
|
|
|metallic; layers
|metallic; layers
|<ref>{{Cite journal|last1=Arguilla|first1=Maxx Q.|last2=Katoch|first2=Jyoti|last3=Krymowski|first3=Kevin|last4=Cultrara|first4=Nicholas D.|last5=Xu|first5=Jinsong|last6=Xi|first6=Xiaoxiang|last7=Hanks|first7=Amanda|last8=Jiang|first8=Shishi|last9=Ross|first9=Richard D.|last10=Koch|first10=Roland J.|last11=Ulstrup|first11=Søren|date=2016-10-25|title=NaSn 2 As 2 : An Exfoliatable Layered van der Waals Zintl Phase|url=https://pubs.acs.org/doi/10.1021/acsnano.6b04609|journal=ACS Nano|language=en|volume=10|issue=10|pages=9500–9508|doi=10.1021/acsnano.6b04609|pmid=27700035|arxiv=1710.09059|s2cid=20747874|issn=1936-0851}}</ref>
|<ref>{{Cite journal |last=Arguilla |first=Maxx Q. |last2=Katoch |first2=Jyoti |last3=Krymowski |first3=Kevin |last4=Cultrara |first4=Nicholas D. |last5=Xu |first5=Jinsong |last6=Xi |first6=Xiaoxiang |last7=Hanks |first7=Amanda |last8=Jiang |first8=Shishi |last9=Ross |first9=Richard D. |last10=Koch |first10=Roland J. |last11=Ulstrup |first11=Søren |date=2016-10-25 |title=NaSn 2 As 2 : An Exfoliatable Layered van der Waals Zintl Phase |url=https://pubs.acs.org/doi/10.1021/acsnano.6b04609 |journal=ACS Nano |language=en |volume=10 |issue=10 |pages=9500–9508 |arxiv=1710.09059 |doi=10.1021/acsnano.6b04609 |issn=1936-0851 |pmid=27700035 |s2cid=20747874}}</ref>
|-
|-
|
|
|KRbSn<sub>3</sub>As<sub>3</sub>
|KSn<sub>3</sub>As<sub>3</sub>
|
|
|orthorhombic
|''Pnma''
|Z=4
|
|
|
|
|[[band gap]] 0.50 eV
|
|<ref name=":0">{{Cite journal |last=Khatun |first=Mansura |last2=Stoyko |first2=Stanislav S. |last3=Mar |first3=Arthur |date=June 2016 |title=Ternary arsenides ATt3As3 (A=K, Rb; Tt=Ge, Sn) with layered structures |journal=Journal of Solid State Chemistry |volume=238 |pages=229–235 |bibcode=2016JSSCh.238..229K |doi=10.1016/j.jssc.2016.03.035}}</ref>
|
|
|
|<ref name=":0">{{cite journal|last1=Khatun|first1=Mansura|last2=Stoyko|first2=Stanislav S.|last3=Mar|first3=Arthur|date=June 2016|title=Ternary arsenides ATt3As3 (A=K, Rb; Tt=Ge, Sn) with layered structures|journal=Journal of Solid State Chemistry|volume=238|pages=229–235|doi=10.1016/j.jssc.2016.03.035|bibcode=2016JSSCh.238..229K}}</ref>
|-
|-
|
|
|RbRbSn<sub>3</sub>As<sub>3</sub>
|RbSn<sub>3</sub>As<sub>3</sub>
|
|
|
|
|
|orthorhombic
|''Pnma''
|''a''=10.321, ''b''=4.0917, ''c''=19.570
|
|
|
|
Line 82: Line 82:
|
|
|
|
|<ref>{{Cite journal|last1=Eisenmann|first1=Brigitte|last2=Jordan|first2=Hanna|last3=Schäfer|first3=Herbert|date=November 1985|title=Ca5Sn2As6, das erste Inoarsenidostannat(IV)|url=https://onlinelibrary.wiley.com/doi/10.1002/zaac.19855301108|journal=Zeitschrift f�r anorganische und allgemeine Chemie|language=de|volume=530|issue=11|pages=74–78|doi=10.1002/zaac.19855301108|issn=0044-2313}}</ref>
|<ref>{{Cite journal |last=Eisenmann |first=Brigitte |last2=Jordan |first2=Hanna |last3=Schäfer |first3=Herbert |date=November 1985 |title=Ca5Sn2As6, das erste Inoarsenidostannat(IV) |url=https://onlinelibrary.wiley.com/doi/10.1002/zaac.19855301108 |journal=Zeitschrift für anorganische und allgemeine Chemie |language=de |volume=530 |issue=11 |pages=74–78 |doi=10.1002/zaac.19855301108 |issn=0044-2313}}</ref>
|-
|-
|
|
|α-Sr<small><sub>3</sub></small>Sn<small><sub>2</sub></small>As<small><sub>4</sub></small>
|α-Sr<sub>3</sub>Sn<sub>2</sub>As<sub>4</sub>
|
|
|orthorhombic
|orthorhombic
Line 93: Line 93:
|
|
|melt 1185K; band gap 0.9 eV
|melt 1185K; band gap 0.9 eV
|<ref name=":2">{{Cite journal|last1=Liu|first1=Xiao-Cun|last2=Pan|first2=Ming-Yan|last3=Li|first3=Xin|last4=Xia|first4=Sheng-Qing|last5=Tao|first5=Xu-Tang|date=2014|title=Synthesis, polymorphism, and electronic structures of Sr 3 Sn 2 As 4|url=http://xlink.rsc.org/?DOI=C4QI00106K|journal=Inorg. Chem. Front.|language=en|volume=1|issue=9|pages=689–694|doi=10.1039/C4QI00106K|issn=2052-1553}}</ref>
|<ref name=":2">{{Cite journal |last=Liu |first=Xiao-Cun |last2=Pan |first2=Ming-Yan |last3=Li |first3=Xin |last4=Xia |first4=Sheng-Qing |last5=Tao |first5=Xu-Tang |date=2014 |title=Synthesis, polymorphism, and electronic structures of Sr 3 Sn 2 As 4 |url=http://xlink.rsc.org/?DOI=C4QI00106K |journal=Inorg. Chem. Front. |language=en |volume=1 |issue=9 |pages=689–694 |doi=10.1039/C4QI00106K |issn=2052-1553}}</ref>
|-
|-
|
|
|β-Sr<small><sub>3</sub></small>Sn<small><sub>2</sub></small>As<small><sub>4</sub></small>
|β-Sr<sub>3</sub>Sn<sub>2</sub>As<sub>4</sub>
|
|
|monoclinic
|monoclinic
|''P''2<small><sub>1</sub></small>/''c''
|''P''2<sub>1</sub>/''c''
|''a'' = 7.705, ''b'' = 19.118, ''c'' = 7.688, ''β'' = 112.003°, ''Z'' = 4
|''a'' = 7.705, ''b'' = 19.118, ''c'' = 7.688, ''β'' = 112.003°, ''Z'' = 4
|1049.9
|1049.9
Line 109: Line 109:
|Sr<sub>14</sub>Sn<sub>3</sub>As<sub>12</sub>
|Sr<sub>14</sub>Sn<sub>3</sub>As<sub>12</sub>
|
|
|trigonal
|''R''3
|Z=3
|
|
|
|
|
|
|<ref name=":1">{{Cite journal |last=Liu |first=Xiao-Cun |last2=Pan |first2=Ming-Yan |last3=Xia |first3=Sheng-Qing |last4=Tao |first4=Xu-Tang |date=21 September 2015 |title=Sr 14 Sn 3 As 12 and Eu 14 Sn 3 As 12 : Enantiomorph-like Zintl Compounds |journal=Inorganic Chemistry |volume=54 |issue=18 |pages=8875–8877 |doi=10.1021/acs.inorgchem.5b01145 |pmid=26361335}}</ref>
|
|
|
|<ref name=":1">{{cite journal|last1=Liu|first1=Xiao-Cun|last2=Pan|first2=Ming-Yan|last3=Xia|first3=Sheng-Qing|last4=Tao|first4=Xu-Tang|date=21 September 2015|title=Sr 14 Sn 3 As 12 and Eu 14 Sn 3 As 12 : Enantiomorph-like Zintl Compounds|journal=Inorganic Chemistry|volume=54|issue=18|pages=8875–8877|doi=10.1021/acs.inorgchem.5b01145|pmid=26361335}}</ref>
|-
|-
|
|
Line 121: Line 121:
|
|
|monoclinic
|monoclinic
|''P''2<small><sub>1</sub></small>/''n''
|''P''2<sub>1</sub>/''n''
|a=8.637, ''b''=18.354, ''c''=9.721, ''β''=90.05°, ''Z''=4
|a=8.637, ''b''=18.354, ''c''=9.721, ''β''=90.05°, ''Z''=4
|
|
|
|
|
|
|<ref>{{Cite journal|last1=Lam|first1=Robert|last2=Mar|first2=Arthur|date=May 2001|title=The metallic Zintl phase Ba3Sn4As6|url=https://linkinghub.elsevier.com/retrieve/pii/S1293255801011554|journal=Solid State Sciences|language=en|volume=3|issue=4|pages=503–512|doi=10.1016/S1293-2558(01)01155-4|bibcode=2001SSSci...3..503L}}</ref>
|<ref>{{Cite journal |last=Lam |first=Robert |last2=Mar |first2=Arthur |date=May 2001 |title=The metallic Zintl phase Ba3Sn4As6 |url=https://linkinghub.elsevier.com/retrieve/pii/S1293255801011554 |journal=Solid State Sciences |language=en |volume=3 |issue=4 |pages=503–512 |bibcode=2001SSSci...3..503L |doi=10.1016/S1293-2558(01)01155-4}}</ref>
|-
|-
|
|
Line 137: Line 137:
|
|
|
|
|<ref>{{Cite journal|last1=Wu|first1=Hanlin|last2=Li|first2=Sheng|last3=Wang|first3=Xiqu|last4=Kwon|first4=Sunah|last5=Liu|first5=Wenhao|last6=Ofenstein|first6=Gareth A.|last7=Kim|first7=Moon J.|last8=Lv|first8=Bing|date=February 2022|title=New layered quaternary BaCu6Sn2As4−x and BaCu6Sn2P4−x phases: Crystal growth and physical properties|url=https://linkinghub.elsevier.com/retrieve/pii/S0925838821035210|journal=Journal of Alloys and Compounds|language=en|volume=892|pages=162111|doi=10.1016/j.jallcom.2021.162111|s2cid=239061015}}</ref>
|<ref>{{Cite journal |last=Wu |first=Hanlin |last2=Li |first2=Sheng |last3=Wang |first3=Xiqu |last4=Kwon |first4=Sunah |last5=Liu |first5=Wenhao |last6=Ofenstein |first6=Gareth A. |last7=Kim |first7=Moon J. |last8=Lv |first8=Bing |date=February 2022 |title=New layered quaternary BaCu6Sn2As4−x and BaCu6Sn2P4−x phases: Crystal growth and physical properties |url=https://linkinghub.elsevier.com/retrieve/pii/S0925838821035210 |journal=Journal of Alloys and Compounds |language=en |volume=892 |pages=162111 |doi=10.1016/j.jallcom.2021.162111 |s2cid=239061015}}</ref>
|-
|-
|
|
Line 148: Line 148:
|5.316
|5.316
|black; Si<sub>4</sub>As<sub>10</sub> units; band gap 1.0 eV
|black; Si<sub>4</sub>As<sub>10</sub> units; band gap 1.0 eV
|<ref>{{Cite journal|last1=Liu|first1=Xiao-Cun|last2=Lin|first2=Na|last3=Wang|first3=Jian|last4=Pan|first4=Ming-Yan|last5=Zhao|first5=Xian|last6=Tao|first6=Xu-Tang|last7=Xia|first7=Sheng-Qing|date=2013-10-21|title=Ba 13 Si 6 Sn 8 As 22 : A Quaternary Zintl Phase Containing Adamantane-Like [Si 4 As 10 ] Clusters|url=https://pubs.acs.org/doi/10.1021/ic402023z|journal=Inorganic Chemistry|language=en|volume=52|issue=20|pages=11836–11842|doi=10.1021/ic402023z|pmid=24079277|issn=0020-1669}}</ref>
|<ref>{{Cite journal |last=Liu |first=Xiao-Cun |last2=Lin |first2=Na |last3=Wang |first3=Jian |last4=Pan |first4=Ming-Yan |last5=Zhao |first5=Xian |last6=Tao |first6=Xu-Tang |last7=Xia |first7=Sheng-Qing |date=2013-10-21 |title=Ba 13 Si 6 Sn 8 As 22 : A Quaternary Zintl Phase Containing Adamantane-Like [Si 4 As 10 ] Clusters |url=https://pubs.acs.org/doi/10.1021/ic402023z |journal=Inorganic Chemistry |language=en |volume=52 |issue=20 |pages=11836–11842 |doi=10.1021/ic402023z |issn=0020-1669 |pmid=24079277}}</ref>
|-
|-
|
|
Line 159: Line 159:
|
|
|
|
|<ref>{{Cite journal|last1=Pakhira|first1=Santanu|last2=Tanatar|first2=M. A.|last3=Heitmann|first3=Thomas|last4=Vaknin|first4=David|last5=Johnston|first5=D. C.|date=2021-11-19|title=A -type antiferromagnetic order and magnetic phase diagram of the trigonal Eu spin- 7 2 triangular-lattice compound EuSn 2 As 2|url=https://link.aps.org/doi/10.1103/PhysRevB.104.174427|journal=Physical Review B|language=en|volume=104|issue=17|pages=174427|doi=10.1103/PhysRevB.104.174427|arxiv=2106.10519|bibcode=2021PhRvB.104q4427P|s2cid=235489681|issn=2469-9950}}</ref>
|<ref>{{Cite journal |last=Pakhira |first=Santanu |last2=Tanatar |first2=M. A. |last3=Heitmann |first3=Thomas |last4=Vaknin |first4=David |last5=Johnston |first5=D. C. |date=2021-11-19 |title=A -type antiferromagnetic order and magnetic phase diagram of the trigonal Eu spin- 7 2 triangular-lattice compound EuSn 2 As 2 |url=https://link.aps.org/doi/10.1103/PhysRevB.104.174427 |journal=Physical Review B |language=en |volume=104 |issue=17 |pages=174427 |arxiv=2106.10519 |bibcode=2021PhRvB.104q4427P |doi=10.1103/PhysRevB.104.174427 |issn=2469-9950 |s2cid=235489681}}</ref>
|-
|-
|
|
|Eu<sub>14</sub>Sn<sub>3</sub>As<sub>12</sub>
|Eu<sub>14</sub>Sn<sub>3</sub>As<sub>12</sub>
|
|
|trigonal
|
|''R''3
|
|
|Z=3
|
|
|
|
Line 180: Line 180:
|3089.7
|3089.7
|6.599
|6.599
|silver; band gap 0.04 eV; ferromagnetic below 15K; negative colossal magnetoresistance
|silver; band gap 0.04 eV; [[Ferromagnetism|ferromagnetic]] below 15K; negative [[colossal magnetoresistance]]
|<ref>{{Cite journal|last1=Devlin|first1=Kasey P.|last2=Kazem|first2=Nasrin|last3=Zaikina|first3=Julia V.|last4=Cooley|first4=Joya A.|last5=Badger|first5=Jackson R.|last6=Fettinger|first6=James C.|last7=Taufour|first7=Valentin|last8=Kauzlarich|first8=Susan M.|date=2018-10-23|title=Eu 11 Zn 4 Sn 2 As 12 : A Ferromagnetic Zintl Semiconductor with a Layered Structure Featuring Extended Zn 4 As 6 Sheets and Ethane-like Sn 2 As 6 Units|url=https://pubs.acs.org/doi/10.1021/acs.chemmater.8b02749|journal=Chemistry of Materials|language=en|volume=30|issue=20|pages=7067–7076|doi=10.1021/acs.chemmater.8b02749|s2cid=105572581|issn=0897-4756}}</ref>
|<ref>{{Cite journal |last=Devlin |first=Kasey P. |last2=Kazem |first2=Nasrin |last3=Zaikina |first3=Julia V. |last4=Cooley |first4=Joya A. |last5=Badger |first5=Jackson R. |last6=Fettinger |first6=James C. |last7=Taufour |first7=Valentin |last8=Kauzlarich |first8=Susan M. |date=2018-10-23 |title=Eu 11 Zn 4 Sn 2 As 12 : A Ferromagnetic Zintl Semiconductor with a Layered Structure Featuring Extended Zn 4 As 6 Sheets and Ethane-like Sn 2 As 6 Units |url=https://pubs.acs.org/doi/10.1021/acs.chemmater.8b02749 |journal=Chemistry of Materials |language=en |volume=30 |issue=20 |pages=7067–7076 |doi=10.1021/acs.chemmater.8b02749 |issn=0897-4756 |s2cid=105572581}}</ref>
|}
|}


==References==
== References ==
{{Reflist}}
{{Reflist}}

{{arsenides}}

[[Category:Arsenides]]
[[Category:Tin compounds]]

Latest revision as of 14:01, 13 December 2024

Arsenidostanates are chemical compounds that contain anions with arsenic bonded to tin. They are in the category of tetrelarsenides, pnictidostancates, or tetrelpnictides.

They are distinct from arsenide stannides such as palarstanide, (Pd8(Sn,As)3) where the cation charge exceeds that on the tin or arsenic.[1] Other minerals that contain arsenic and tin are erniggliite[2] and coiraite.[3]

name formula formula

weight

crystal

system

space

group

unit cell volume density comments ref
Li1–xSn2+xAs2, 0.2 < x < 0.4 trigonal R3m a=3.991-4.0244 c=25.592-25.632 Z=3 353.6-358.9 [4]
Na2SnAs2 I41/acd a=14.166, c=21.191, Z = 32 metallic grey [5]
NaSn2As2 rhombohedral R3m a=4.000 c=27.562 metallic; layers [6]
KSn3As3 orthorhombic Pnma Z=4 band gap 0.50 eV [7]
RbSn3As3 orthorhombic Pnma a=10.321, b=4.0917, c=19.570 [7]
Ca5Sn2As6 orthorhombic Pbam a = 13.643, b = 11.830, c = 4.121 Z=2 [8]
α-Sr3Sn2As4 orthorhombic Cmca a = 25.798, b = 12.888, c = 19.124, Z = 24 6358.8 melt 1185K; band gap 0.9 eV [9]
β-Sr3Sn2As4 monoclinic P21/c a = 7.705, b = 19.118, c = 7.688, β = 112.003°, Z = 4 1049.9 dec>800K; band gap 0.9 eV [9]
Sr14Sn3As12 trigonal R3 Z=3 [10]
Ba3Sn4As6 monoclinic P21/n a=8.637, b=18.354, c=9.721, β=90.05°, Z=4 [11]
BaCu6Sn2As4−x tetragonal I4/mmm a = 4.164, c = 24.088 [12]
Ba13Si6Sn8As22 4551.72 tetragonal I42m a = 14.4857, c = 13.5506 Z=2 2843.4 5.316 black; Si4As10 units; band gap 1.0 eV [13]
EuSn2As2 trigonal [14]
Eu14Sn3As12 trigonal R3 Z=3 [10]
Eu11Zn4Sn2As12 3069.46 monoclinic C2/c a = 7.5679, b = 13.0883, c = 31.305, β = 94.8444 Z=4 3089.7 6.599 silver; band gap 0.04 eV; ferromagnetic below 15K; negative colossal magnetoresistance [15]

References

[edit]
  1. ^ "Palarstanide Mineral Data". webmineral.com. Retrieved 8 December 2021.
  2. ^ "Erniggliite Mineral Data". webmineral.com. Retrieved 8 December 2021.
  3. ^ "Coiraite Mineral Data". webmineral.com. Retrieved 8 December 2021.
  4. ^ Lee, Kathleen; Kaseman, Derrick; Sen, Sabyasachi; Hung, Ivan; Gan, Zhehong; Gerke, Birgit; Pöttgen, Rainer; Feygenson, Mikhail; Neuefeind, Jörg; Lebedev, Oleg I.; Kovnir, Kirill (2015-03-18). "Intricate Short-Range Ordering and Strongly Anisotropic Transport Properties of Li 1– x Sn 2+ x As 2". Journal of the American Chemical Society. 137 (10): 3622–3630. doi:10.1021/jacs.5b00237. ISSN 0002-7863. OSTI 1334418. PMID 25702752.
  5. ^ Asbrand, Matthias; Eisenmann, Brigitte (1993). "Na2[SnAs2], the first Zintl phase with a [SnAs2] framework based on adamantane analogous [Sn4As10] units". Zeitschrift für Naturforschung B. 48: 452–456. doi:10.1515/znb-1993-0409. ISSN 0932-0776. S2CID 95169843.
  6. ^ Arguilla, Maxx Q.; Katoch, Jyoti; Krymowski, Kevin; Cultrara, Nicholas D.; Xu, Jinsong; Xi, Xiaoxiang; Hanks, Amanda; Jiang, Shishi; Ross, Richard D.; Koch, Roland J.; Ulstrup, Søren (2016-10-25). "NaSn 2 As 2 : An Exfoliatable Layered van der Waals Zintl Phase". ACS Nano. 10 (10): 9500–9508. arXiv:1710.09059. doi:10.1021/acsnano.6b04609. ISSN 1936-0851. PMID 27700035. S2CID 20747874.
  7. ^ a b Khatun, Mansura; Stoyko, Stanislav S.; Mar, Arthur (June 2016). "Ternary arsenides ATt3As3 (A=K, Rb; Tt=Ge, Sn) with layered structures". Journal of Solid State Chemistry. 238: 229–235. Bibcode:2016JSSCh.238..229K. doi:10.1016/j.jssc.2016.03.035.
  8. ^ Eisenmann, Brigitte; Jordan, Hanna; Schäfer, Herbert (November 1985). "Ca5Sn2As6, das erste Inoarsenidostannat(IV)". Zeitschrift für anorganische und allgemeine Chemie (in German). 530 (11): 74–78. doi:10.1002/zaac.19855301108. ISSN 0044-2313.
  9. ^ a b Liu, Xiao-Cun; Pan, Ming-Yan; Li, Xin; Xia, Sheng-Qing; Tao, Xu-Tang (2014). "Synthesis, polymorphism, and electronic structures of Sr 3 Sn 2 As 4". Inorg. Chem. Front. 1 (9): 689–694. doi:10.1039/C4QI00106K. ISSN 2052-1553.
  10. ^ a b Liu, Xiao-Cun; Pan, Ming-Yan; Xia, Sheng-Qing; Tao, Xu-Tang (21 September 2015). "Sr 14 Sn 3 As 12 and Eu 14 Sn 3 As 12 : Enantiomorph-like Zintl Compounds". Inorganic Chemistry. 54 (18): 8875–8877. doi:10.1021/acs.inorgchem.5b01145. PMID 26361335.
  11. ^ Lam, Robert; Mar, Arthur (May 2001). "The metallic Zintl phase Ba3Sn4As6". Solid State Sciences. 3 (4): 503–512. Bibcode:2001SSSci...3..503L. doi:10.1016/S1293-2558(01)01155-4.
  12. ^ Wu, Hanlin; Li, Sheng; Wang, Xiqu; Kwon, Sunah; Liu, Wenhao; Ofenstein, Gareth A.; Kim, Moon J.; Lv, Bing (February 2022). "New layered quaternary BaCu6Sn2As4−x and BaCu6Sn2P4−x phases: Crystal growth and physical properties". Journal of Alloys and Compounds. 892: 162111. doi:10.1016/j.jallcom.2021.162111. S2CID 239061015.
  13. ^ Liu, Xiao-Cun; Lin, Na; Wang, Jian; Pan, Ming-Yan; Zhao, Xian; Tao, Xu-Tang; Xia, Sheng-Qing (2013-10-21). "Ba 13 Si 6 Sn 8 As 22 : A Quaternary Zintl Phase Containing Adamantane-Like [Si 4 As 10 ] Clusters". Inorganic Chemistry. 52 (20): 11836–11842. doi:10.1021/ic402023z. ISSN 0020-1669. PMID 24079277.
  14. ^ Pakhira, Santanu; Tanatar, M. A.; Heitmann, Thomas; Vaknin, David; Johnston, D. C. (2021-11-19). "A -type antiferromagnetic order and magnetic phase diagram of the trigonal Eu spin- 7 2 triangular-lattice compound EuSn 2 As 2". Physical Review B. 104 (17): 174427. arXiv:2106.10519. Bibcode:2021PhRvB.104q4427P. doi:10.1103/PhysRevB.104.174427. ISSN 2469-9950. S2CID 235489681.
  15. ^ Devlin, Kasey P.; Kazem, Nasrin; Zaikina, Julia V.; Cooley, Joya A.; Badger, Jackson R.; Fettinger, James C.; Taufour, Valentin; Kauzlarich, Susan M. (2018-10-23). "Eu 11 Zn 4 Sn 2 As 12 : A Ferromagnetic Zintl Semiconductor with a Layered Structure Featuring Extended Zn 4 As 6 Sheets and Ethane-like Sn 2 As 6 Units". Chemistry of Materials. 30 (20): 7067–7076. doi:10.1021/acs.chemmater.8b02749. ISSN 0897-4756. S2CID 105572581.