Jump to content

Glycerol: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Tags: Reverted blanking Mobile edit Mobile web edit
 
(46 intermediate revisions by 33 users not shown)
Line 1: Line 1:
{{short description|Chemical compound widely used in food and pharmaceuticals}}{{Redirect|Glycerine|the song by Bush|Glycerine (song)}}{{Use dmy dates|date=September 2020}}
{{short description|Chemical compound widely used in food and pharmaceuticals}}{{Redirect|Glycerine|the song by Bush|Glycerine (song)}}{{Use dmy dates|date=August 2024}}
{{Chembox
{{and Applied Chemistry]] |date=2014 |title=Nomenclature of Organic
| Watchedfields = changed
| verifiedrevid = 464392960
| Name = Glycerol
| ImageFile1 = Glycerin_Skelett.svg
| ImageName1 = Glycerol
| ImageClass1 = skin-invert-image
| ImageFileL2 = Glycerol-3D-balls.png
| ImageNameL2 = Ball-and-stick model of glycerol
| ImageFileR2 = Glycerol-3D-vdW.png
| ImageNameR2 = Space-filling model of glycerol
| ImageFile3 = Sample of Glycerine.jpg
| ImageName3 = Sample of glycerine
| PIN = Propane-1,2,3-triol<ref>{{cite book |author=[[International Union of Pure and Applied Chemistry]] |date=2014 |title=Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 |publisher=[[Royal Society of Chemistry|The Royal Society of Chemistry]] |pages=690 |doi=10.1039/9781849733069 |isbn=978-0-85404-182-4}}</ref>
| OtherNames = {{Unbulleted list
| 1,2,3-Trioxypropane
| 1,2,3-Trihydroxypropane
| 1,2,3-Propanetriol
}}
| Section1 = {{Chembox Identifiers
|IUPHAR_ligand = 5195
|UNII_Ref = {{fdacite|correct|FDA}}
|UNII = PDC6A3C0OX
|KEGG_Ref = {{keggcite|correct|kegg}}
|KEGG = D00028
|InChI = 1/C3H8O3/c4-1-3(6)2-5/h3-6H,1-2H2
|InChIKey = PEDCQBHIVMGVHV-UHFFFAOYAF
|ChEMBL_Ref = {{ebicite|correct|EBI}}
|ChEMBL = 692
|StdInChI_Ref = {{stdinchicite|correct|chemspider}}
|StdInChI = 1S/C3H8O3/c4-1-3(6)2-5/h3-6H,1-2H2
|StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
|StdInChIKey = PEDCQBHIVMGVHV-UHFFFAOYSA-N
|CASNo_Ref = {{cascite|correct|CAS}}
|CASNo = 56-81-5
|PubChem = 753
|ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
|ChemSpiderID = 733
|DrugBank_Ref = {{drugbankcite|correct|drugbank}}
|DrugBank = DB04077
|ChEBI = 17754
|ChEBI_Ref = {{ebicite|correct|EBI}}
|SMILES = OCC(O)CO
}}
| Section2 = {{Chembox Properties
|C=3 | H=8 | O=3
|Appearance = Colorless [[hygroscopic]] liquid
|Odor = Odorless
|Density = 1.261 g/cm<sup>3</sup>
|Viscosity = 1.412 Pa·s (20&nbsp;°C)<ref name="Viscosity of Glycerol and its Aqueous Solutions">{{cite journal |last1= Segur |first1= J. B. |last2= Oberstar |first2= H. E. |doi= 10.1021/ie50501a040 |title= Viscosity of Glycerol and Its Aqueous Solutions |journal= Industrial & Engineering Chemistry |volume= 43 |issue= 9 |pages= 2117–2120 |year= 1951 }}</ref>
|MeltingPtC = 17.8
|BoilingPtC = 290
|BoilingPt_ref = <ref>{{cite book |editor= Lide, D. R. |title= CRC Handbook of Data on Organic Compounds |edition= 3rd |publisher= CRC Press |location= Boca Raton, FL |year= 1994 |page= 4386}}</ref>
|RefractIndex = 1.4746
|VaporPressure = {{cvt|0.003|mmHg|Pa}} at 50&nbsp;°C<ref name=PGCH/>
|Solubility = miscible<ref name=PGCH/>
|MagSus = {{val|-57.06e-6|u=cm<sup>3</sup>/mol}}
|LogP = −2.32<ref name="chemsrc">{{Cite web|url=https://www.chemsrc.com/en/cas/56-81-5_401679.html|title=glycerin_msds|access-date=7 May 2018|archive-date=8 March 2020|archive-url=https://web.archive.org/web/20200308030040/https://www.chemsrc.com/en/cas/56-81-5_401679.html|url-status=live}}</ref>
}}
| Section3 = {{Chembox Pharmacology
|ATCCode_prefix = A06
|ATCCode_suffix = AG04
|ATC_Supplemental = {{ATC|A06|AX01}}, {{ATCvet|A16|QA03}}
}}
}}
| Section4 = {{Chembox Hazards
| Section4 = {{Chembox Hazards
|ExternalSDS = [https://web.archive.org/web/20110505085357/https://www.jtbaker.com/msds/englishhtml/g4774.htm JT Baker ver. 2008 archive]
|ExternalSDS = [resp)<ref name=PGCH>{{PGCH|0302}}</ref>
|NFPA-H = 1
|NFPA-F = 1
|NFPA-R = 0
|FlashPt = {{convert|160|C|F K}} (closed cup)<br /> {{convert|176|C|F K}} (open cup)
|PEL = TWA 15&nbsp;mg/m<sup>3</sup> (total)<br /> TWA 5&nbsp;mg/m<sup>3</sup> (resp)<ref name=PGCH>{{PGCH|0302}}</ref>
|IDLH = N.D.<ref name=PGCH/>
|IDLH = N.D.<ref name=PGCH/>
|REL = None established<ref name=PGCH/>
|REL
}}
}}

'''Glycerol''' ({{IPAc-en|ˈ|g|l|ɪ|s|ə|r|ɒ|l}})<ref>{{cite web|url=https://www.oxforddictionaries.com/definition/english/glycerol|title=glycerol – Definition of glycerol in English by Oxford Dictionaries|website=Oxford Dictionaries – English|access-date=21 February 2022|archive-date=21 June 2016|archive-url=https://web.archive.org/web/20160621205507/http://www.oxforddictionaries.com/definition/english/glycerol|url-status=dead}}</ref> is a simple [[triol]] compound. It is a colorless, odorless, [[viscous]] liquid that is sweet-tasting and non-toxic. The glycerol backbone is found in [[lipid]]s known as [[glyceride]]s. It is also widely used as a sweetener in the food industry and as a [[humectant]] in [[pharmaceutical formulation]]s. Because of its three [[hydroxyl group]]s, glycerol is [[miscible]] with [[water]] and is [[Hygroscopy|hygroscopic]] in nature.<ref name="Ullmann"/>

Modern use of the word '''glycerine''' (alternatively spelled '''glycerin''') refers to commercial preparations of less than 100% purity, typically 95% glycerol. <ref>{{cite web|url= https://www.echemi.com/cms/1795050.html |title=Is There any Difference Between Glycerin and Glycerol?|website=Oxford Dictionaries – English|date=9 April 2024|access-date=20 October 2024}}</ref>


==Structure==
==Structure==
Line 22: Line 95:
Typical plant sources include [[soybeans]] or [[Arecaceae|palm]]. Animal-derived [[tallow]] is another source. Approximately 950,000 tons per year are produced in the United States and Europe; 350,000 tons of glycerol were produced per year in the U.S. alone from 2000 to 2004.<ref>{{cite web |title= A Glycerin Factor |author= Nilles, Dave |url= https://www.biodieselmagazine.com/article.jsp?article_id=377 |publisher= Biodiesel Magazine |year= 2005 |access-date= 21 February 2022 |archive-date= 8 November 2007 |archive-url= https://web.archive.org/web/20071108114027/http://www.biodieselmagazine.com/article.jsp?article_id=377 |url-status= live }}</ref> The [[Directive on the Promotion of the use of biofuels and other renewable fuels for transport|EU directive 2003/30/EC]] set a requirement that 5.75% of petroleum fuels were to be replaced with [[biofuel]] sources across all [[Member state of the European Union|member states]] by 2010. It was projected in 2006 that by 2020, production would be six times more than demand, creating an excess of glycerol as a byproduct of biofuel production.<ref name="Ullmann">{{cite encyclopedia |encyclopedia= Ullmann's Encyclopedia of Industrial Chemistry |last1= Christoph |first1= Ralf |last2= Schmidt |first2= Bernd |last3= Steinberner |first3= Udo |last4= Dilla |first4= Wolfgang |last5= Karinen |first5= Reetta |year= 2006 |doi= 10.1002/14356007.a12_477.pub2 |chapter= Glycerol |isbn= 3527306730}}</ref>
Typical plant sources include [[soybeans]] or [[Arecaceae|palm]]. Animal-derived [[tallow]] is another source. Approximately 950,000 tons per year are produced in the United States and Europe; 350,000 tons of glycerol were produced per year in the U.S. alone from 2000 to 2004.<ref>{{cite web |title= A Glycerin Factor |author= Nilles, Dave |url= https://www.biodieselmagazine.com/article.jsp?article_id=377 |publisher= Biodiesel Magazine |year= 2005 |access-date= 21 February 2022 |archive-date= 8 November 2007 |archive-url= https://web.archive.org/web/20071108114027/http://www.biodieselmagazine.com/article.jsp?article_id=377 |url-status= live }}</ref> The [[Directive on the Promotion of the use of biofuels and other renewable fuels for transport|EU directive 2003/30/EC]] set a requirement that 5.75% of petroleum fuels were to be replaced with [[biofuel]] sources across all [[Member state of the European Union|member states]] by 2010. It was projected in 2006 that by 2020, production would be six times more than demand, creating an excess of glycerol as a byproduct of biofuel production.<ref name="Ullmann">{{cite encyclopedia |encyclopedia= Ullmann's Encyclopedia of Industrial Chemistry |last1= Christoph |first1= Ralf |last2= Schmidt |first2= Bernd |last3= Steinberner |first3= Udo |last4= Dilla |first4= Wolfgang |last5= Karinen |first5= Reetta |year= 2006 |doi= 10.1002/14356007.a12_477.pub2 |chapter= Glycerol |isbn= 3527306730}}</ref>


Glycerol from triglycerides is produced on a large scale, but the crude product is of variable quality, with a low selling price of as low as US$0.02–0.05 per kilogram in 2011.<ref>{{cite journal |last1 = San Kong |first1 = Pei |last2 = Kheireddine Aroua |first2 = Mohamed |last3 = Ashri Wan Daud |first3 = Wan Mohd |year = 2016 |title = Conversion of crude and pure glycerol into derivatives: A feasibility evaluation |journal = Renewable and Sustainable Energy Reviews |volume = 63 |pages = 533–555 |doi = 10.1016/j.rser.2016.05.054 }}</ref> It can be purified, but the process is expensive. Some glycerol is burned for energy, but its heat value is low.<ref>{{cite news |url= https://www.biodieselmagazine.com/articles/8137/clearing-the-way-for-byproduct-quality |work= Biodiesel Magazine |title= Clearing the way for byproduct quality: why quality for glycerin is just as important for biodiesel |author= Sims, Bryan |date= 25 October 2011 |access-date= 21 February 2022 |archive-date= 29 April 2021 |archive-url= https://web.archive.org/web/20210429154729/http://www.biodieselmagazine.com/articles/8137/clearing-the-way-for-byproduct-quality |url-status= live}}</ref>
Glycerol from triglycerides is produced on a large scale, but the crude product is of variable quality, with a low selling price of as low as US$0.02–0.05 per kilogram in 2011.<ref>{{cite journal |last1 = San Kong |first1 = Pei |last2 = Kheireddine Aroua |first2 = Mohamed |last3 = Ashri Wan Daud |first3 = Wan Mohd |year = 2016 |title = Conversion of crude and pure glycerol into derivatives: A feasibility evaluation |journal = Renewable and Sustainable Energy Reviews |volume = 63 |pages = 533–555 |doi = 10.1016/j.rser.2016.05.054 |bibcode = 2016RSERv..63..533K }}</ref> It can be purified, but the process is expensive. Some glycerol is burned for energy, but its heat value is low.<ref>{{cite news |url= https://www.biodieselmagazine.com/articles/8137/clearing-the-way-for-byproduct-quality |work= Biodiesel Magazine |title= Clearing the way for byproduct quality: why quality for glycerin is just as important for biodiesel |author= Sims, Bryan |date= 25 October 2011 |access-date= 21 February 2022 |archive-date= 29 April 2021 |archive-url= https://web.archive.org/web/20210429154729/http://www.biodieselmagazine.com/articles/8137/clearing-the-way-for-byproduct-quality |url-status= live}}</ref>


Crude glycerol from the hydrolysis of triglycerides can be purified by treatment with [[activated carbon]] to remove organic impurities, alkali to remove unreacted glycerol esters, and [[ion exchange]] to remove salts. High purity glycerol (greater than 99.5%) is obtained by multi-step distillation; a [[vacuum chamber]] is necessary due to its high boiling point (290&nbsp;°C).<ref name=Ullmann/>
Crude glycerol from the hydrolysis of triglycerides can be purified by treatment with [[activated carbon]] to remove organic impurities, alkali to remove unreacted glycerol esters, and [[ion exchange]] to remove salts. High purity glycerol (greater than 99.5%) is obtained by multi-step distillation; a [[vacuum chamber]] is necessary due to its high boiling point (290&nbsp;°C).<ref name=Ullmann/>


===Synthetic glycerol===
===Synthetic glycerol===
{{See also|#Chemical intermediate}}
Although usually not cost-effective, glycerol can be produced by various routes from [[propene]]. The epichlorohydrin process is the most important: it involves the [[Chlorination reaction|chlorination]] of propylene to give [[allyl chloride]], which is oxidized with [[hypochlorite]] to [[dichlorohydrin]], which reacts with a strong base to give [[epichlorohydrin]]. Epichlorohydrin can be hydrolyzed to glycerol. [[Chlorine]]-free processes from propylene include the synthesis of glycerol from [[acrolein]] and [[propylene oxide]].<ref name="Ullmann" />
:[[File:Synthetic routes to glycerol.png|600px]]

Because of the large-scale production of [[biodiesel]] from fats, where glycerol is a waste product, the market for glycerol is depressed. Thus, synthetic processes are not [[economical]]. Owing to oversupply, efforts are being made to convert glycerol to synthetic precursors, such as [[acrolein]] and epichlorohydrin.<ref>{{cite journal |title= Glycerol|last= Yu|first= Bin|journal= Synlett|volume= 25|issue= 4|pages= 601–602|doi= 10.1055/s-0033-1340636|year= 2014|doi-access= free}}</ref>
Because of the large-scale production of [[biodiesel]] from fats, where glycerol is a waste product, the market for glycerol is depressed. Thus, synthetic processes are not [[economical]]. Owing to oversupply, efforts are being made to convert glycerol to synthetic precursors, such as [[acrolein]] and epichlorohydrin.<ref>{{cite journal |title= Glycerol|last= Yu|first= Bin|journal= Synlett|volume= 25|issue= 4|pages= 601–602|doi= 10.1055/s-0033-1340636|year= 2014|doi-access= free}}</ref>

Although usually not cost-effective because so much is produced from processing of fats, glycerol can be produced by various routes. During [[World War II]], synthetic glycerol processes became a national defense priority because it is a precursor to [[nitroglycerine]]. Epichlorohydrin is the most important precursor. [[Chlorination reaction|Chlorination]] of propylene gives [[allyl chloride]], which is oxidized with [[hypochlorite]] to [[dichlorohydrin]], which reacts with a strong base to give [[epichlorohydrin]]. Epichlorohydrin can be hydrolyzed to glycerol. [[Chlorine]]-free processes from propylene include the synthesis of glycerol from [[acrolein]] and [[propylene oxide]].<ref name="Ullmann" />
: [[File:Synthetic routes to glycerol.png|600px]]


==Applications==
==Applications==
Line 40: Line 112:


It is also recommended as an additive when using polyol sweeteners such as [[erythritol]] and [[xylitol]] which have a cooling effect, due to its heating effect in the mouth, if the cooling effect is not wanted.<ref>{{cite web |title= Functional Food Design Rules |author= Nikolov, Ivan |date= 20 April 2014 |url= https://www.ivannikolov.com/functional-food-design-rules-part-2/ |access-date= 21 February 2022 |archive-date= 30 April 2021 |archive-url= https://web.archive.org/web/20210430030741/https://ivannikolov.com/functional-food-design-rules-part-2/ |url-status= live }}</ref>
It is also recommended as an additive when using polyol sweeteners such as [[erythritol]] and [[xylitol]] which have a cooling effect, due to its heating effect in the mouth, if the cooling effect is not wanted.<ref>{{cite web |title= Functional Food Design Rules |author= Nikolov, Ivan |date= 20 April 2014 |url= https://www.ivannikolov.com/functional-food-design-rules-part-2/ |access-date= 21 February 2022 |archive-date= 30 April 2021 |archive-url= https://web.archive.org/web/20210430030741/https://ivannikolov.com/functional-food-design-rules-part-2/ |url-status= live }}</ref>

Excessive consumption by children can lead to glycerol intoxication.<ref>{{Cite web |last=Burrell |first=Chloe |date=2023-06-02 |title=Perth and Kinross parents warned as 'intoxicated' kids hospitalised by slushy drinks |url=https://www.thecourier.co.uk/fp/news/perth-kinross/4445065/perth-kinross-warning-slushy-drinks/ |access-date=2023-06-03 |website=The Courier |language=en-GB}}</ref> Symptoms of intoxication include [[hypoglycemia]], [[nausea]] and a loss of consciousness ([[Syncope (medicine)|syncope]]). While intoxication as a result of excessive glycerol consumption is rare and its symptoms generally mild, occasional reports of hospitalization have occurred. In the United Kingdom in August 2023, manufacturers of syrup used in slush ice drinks were advised to reduce the amount of glycerol in their formulations by the Food Standards Agency to reduce the risk of intoxication.<ref>{{Cite web |title='Not suitable for under-4s': New industry guidance issued on glycerol in slush-ice drinks |url=https://www.food.gov.uk/news-alerts/news/not-suitable-for-under-4s-new-industry-guidance-issued-on-glycerol-in-slush-ice-drinks |access-date=2023-08-11 |website=Food Standards Agency |language=en}}</ref>


===Medical, pharmaceutical and personal care applications===
===Medical, pharmaceutical and personal care applications===
Line 48: Line 118:
[[File:Dollop of hair gel.jpg|thumb|Glycerol is an ingredient in products such as hair gel]]
[[File:Dollop of hair gel.jpg|thumb|Glycerol is an ingredient in products such as hair gel]]
[[File:Glycerin suppositories.jpg|thumb|right|Glycerol suppositories used as laxatives]]
[[File:Glycerin suppositories.jpg|thumb|right|Glycerol suppositories used as laxatives]]

Glycerin is mildly antimicrobial and antiviral and is an FDA-approved treatment for wounds. The Red Cross reports that an 85% solution of glycerin shows bactericidal and antiviral effects, and wounds treated with glycerin show reduced inflammation after roughly two hours. Due to this it is used widely in wound care products, including glycerin based [[Hydrogel dressing|hydrogel]] sheets for burns and other wound care. It is approved for all types of wound care except third-degree burns, and is used to package donor skin used in skin grafts.<ref>{{cite journal |last1=Stout |first1=Edward I. |last2=McKessor |first2=Angie |title=Glycerin-Based Hydrogel for Infection Control |journal=Advances in Wound Care |date=February 2012 |volume=1 |issue=1 |pages=48–51 |doi=10.1089/wound.2011.0288 |pmid=24527279 |pmc=3839013 }}</ref>


Glycerol is used in [[medicine|medical]], [[pharmaceutical]] and [[personal care]] preparations, often as a means of improving smoothness, providing [[lubrication]], and as a [[humectant]].
Glycerol is used in [[medicine|medical]], [[pharmaceutical]] and [[personal care]] preparations, often as a means of improving smoothness, providing [[lubrication]], and as a [[humectant]].


[[Ichthyosis]] and [[xerosis]] have been relieved by the topical use of glycerin.<ref>{{cite book|title=Ichthyosis: New Insights for the Healthcare Professional|date=22 July 2013|publisher=[[ScholarlyEditions]]|language=en|isbn=9781481659666|page=22}}</ref><ref name="LebwohlHeymann2017">{{cite book|title=Treatment of Skin Disease E-Book: Comprehensive Therapeutic Strategies|date=19 September 2017|publisher=Elsevier Health Sciences|language=en|isbn=9780702069130 |author=Mark G. Lebwohl |author2=Warren R. Heymann |author3=John Berth-Jones |author4=Ian Coulson}}</ref> It is found in allergen [[immunotherapies]], [[cough syrup]]s, [[elixir]]s and [[expectorant]]s, [[toothpaste]], [[mouthwash]]es, [[skin care]] products, shaving cream, [[hair care]] products, [[soap]]s, and water-based [[personal lubricant]]s. In solid dosage forms like tablets, glycerol is used as a tablet holding agent. For human consumption, glycerol is classified by the FDA among the [[sugar alcohol]]s as a caloric macronutrient. Glycerol is also used in [[blood banking]] to preserve [[red blood cell]]s prior to freezing.
[[Ichthyosis]] and [[xerosis]] have been relieved by the topical use of glycerin.<ref>{{cite book|title=Ichthyosis: New Insights for the Healthcare Professional|date=22 July 2013|publisher=[[ScholarlyEditions]]|language=en|isbn=9781481659666|page=22}}</ref><ref name="LebwohlHeymann2017">{{cite book|title=Treatment of Skin Disease E-Book: Comprehensive Therapeutic Strategies|date=19 September 2017|publisher=Elsevier Health Sciences|language=en|isbn=9780702069130 |author=Mark G. Lebwohl |author2=Warren R. Heymann |author3=John Berth-Jones |author4=Ian Coulson}}</ref> It is found in allergen [[immunotherapies]], [[cough syrup]]s, [[elixir]]s and [[expectorant]]s, [[toothpaste]], [[mouthwash]]es, [[skin care]] products, shaving cream, [[hair care]] products, [[soap]]s, and water-based [[personal lubricant]]s. In solid dosage forms like tablets, glycerol is used as a tablet holding agent. For human consumption, glycerol is classified by the FDA among the [[sugar alcohol]]s as a caloric macronutrient. Glycerol is also used in [[blood banking]] to preserve [[red blood cell]]s prior to freezing.{{cn|date=April 2024}}

Glycerol is a component of [[glycerin soap]].<!-- PLEASE DO NOT try to enumerate the ingredients for glycerine soap. There are many differing recipes, each with its own "purist" contingent that swears they are the one true glycerine soapmaker --> [[Essential oil]]s are added for [[fragrance]]. This kind of soap is used by people with sensitive, easily irritated [[skin]] because it prevents skin dryness with its [[moisturizer|moisturizing]] properties. It draws moisture up through skin layers and slows or prevents excessive drying and evaporation.{{citation needed|date=February 2013}}


Taken rectally, glycerol functions as a [[laxative]] by irritating the anal mucosa and inducing a [[Osmotic laxative|hyperosmotic effect]],<ref>{{cite web |url= https://www.drugs.com/cdi/glycerin-enema.html |title= Glycerin Enema |publisher= Drugs.com |access-date= 17 November 2012 |archive-date= 6 November 2012 |archive-url= https://web.archive.org/web/20121106235146/http://www.drugs.com/cdi/glycerin-enema.html |url-status= live }}</ref> expanding the [[Large intestine|colon]] by drawing water into it to induce [[peristalsis]] resulting in [[Defecation|evacuation]].<ref>{{cite web |url=https://www.cancer.gov/publications/dictionaries/cancer-drug/def/glycerin-enema |title=glycerin enema |work=NCI Drug Dictionary |publisher=[[National Cancer Institute]] |access-date=2019-05-02 |date=2 February 2011 |archive-date=2 May 2019 |archive-url=https://web.archive.org/web/20190502220442/https://www.cancer.gov/publications/dictionaries/cancer-drug/def/glycerin-enema |url-status=live }}</ref> It may be administered undiluted either as a [[suppository]] or as a small-volume (2–10&nbsp;ml) [[enema]]. Alternatively, it may be administered in a dilute solution, such as 5%, as a high-volume enema.<ref>{{Citation |author=E. Bertani |author2=A. Chiappa |author3=R. Biffi |author4=P. P. Bianchi |author5=D. Radice |author6=V. Branchi |author7=S. Spampatti |author8=I. Vetrano |author9=B. Andreoni | title = Comparison of oral polyethylene glycol plus a large volume glycerine enema with a large volume glycerine enema alone in patients undergoing colorectal surgery for malignancy: a randomized clinical trial | journal = Colorectal Disease | volume = 13 | issue = 10 | pages = e327–e334 | year = 2011 | pmid = 21689356 | doi = 10.1111/j.1463-1318.2011.02689.x | s2cid = 32872781}}</ref>
Taken rectally, glycerol functions as a [[laxative]] by irritating the anal mucosa and inducing a [[Osmotic laxative|hyperosmotic effect]],<ref>{{cite web |url= https://www.drugs.com/cdi/glycerin-enema.html |title= Glycerin Enema |publisher= Drugs.com |access-date= 17 November 2012 |archive-date= 6 November 2012 |archive-url= https://web.archive.org/web/20121106235146/http://www.drugs.com/cdi/glycerin-enema.html |url-status= live }}</ref> expanding the [[Large intestine|colon]] by drawing water into it to induce [[peristalsis]] resulting in [[Defecation|evacuation]].<ref>{{cite web |url=https://www.cancer.gov/publications/dictionaries/cancer-drug/def/glycerin-enema |title=glycerin enema |work=NCI Drug Dictionary |publisher=[[National Cancer Institute]] |access-date=2019-05-02 |date=2 February 2011 |archive-date=2 May 2019 |archive-url=https://web.archive.org/web/20190502220442/https://www.cancer.gov/publications/dictionaries/cancer-drug/def/glycerin-enema |url-status=live }}</ref> It may be administered undiluted either as a [[suppository]] or as a small-volume (2–10&nbsp;ml) [[enema]]. Alternatively, it may be administered in a dilute solution, such as 5%, as a high-volume enema.<ref>{{Citation |author=E. Bertani |author2=A. Chiappa |author3=R. Biffi |author4=P. P. Bianchi |author5=D. Radice |author6=V. Branchi |author7=S. Spampatti |author8=I. Vetrano |author9=B. Andreoni | title = Comparison of oral polyethylene glycol plus a large volume glycerine enema with a large volume glycerine enema alone in patients undergoing colorectal surgery for malignancy: a randomized clinical trial | journal = Colorectal Disease | volume = 13 | issue = 10 | pages = e327–e334 | year = 2011 | pmid = 21689356 | doi = 10.1111/j.1463-1318.2011.02689.x | s2cid = 32872781}}</ref>
Line 80: Line 146:
Glycerol was historically used as an anti-freeze for automotive applications before being replaced by ethylene glycol, which has a lower freezing point. While the minimum freezing point of a glycerol-water mixture is higher than an ethylene glycol-water mixture, glycerol is not toxic and is being re-examined for use in automotive applications.<ref>{{cite book |last1= Hudgens |first1= R. Douglas |title= SAE Technical Paper Series |volume= 1 |last2= Hercamp |first2= Richard D. |last3= Francis |first3= Jaime |last4= Nyman |first4= Dan A. |last5= Bartoli |first5= Yolanda |year= 2007 |doi= 10.4271/2007-01-4000 |chapter= An Evaluation of Glycerin (Glycerol) as a Heavy Duty Engine Antifreeze/Coolant Base }}</ref><ref>[https://www.astmnewsroom.org/default.aspx?pageid=2115&year=2010&category=Standards%2FTechnical Proposed ASTM Engine Coolant Standards Focus on Glycerin] {{Webarchive|url=https://web.archive.org/web/20170914125754/http://www.astmnewsroom.org/default.aspx?pageid=2115&year=2010&category=Standards%2FTechnical |date=14 September 2017}}. Astmnewsroom.org. Retrieved on 15 August 2012</ref>
Glycerol was historically used as an anti-freeze for automotive applications before being replaced by ethylene glycol, which has a lower freezing point. While the minimum freezing point of a glycerol-water mixture is higher than an ethylene glycol-water mixture, glycerol is not toxic and is being re-examined for use in automotive applications.<ref>{{cite book |last1= Hudgens |first1= R. Douglas |title= SAE Technical Paper Series |volume= 1 |last2= Hercamp |first2= Richard D. |last3= Francis |first3= Jaime |last4= Nyman |first4= Dan A. |last5= Bartoli |first5= Yolanda |year= 2007 |doi= 10.4271/2007-01-4000 |chapter= An Evaluation of Glycerin (Glycerol) as a Heavy Duty Engine Antifreeze/Coolant Base }}</ref><ref>[https://www.astmnewsroom.org/default.aspx?pageid=2115&year=2010&category=Standards%2FTechnical Proposed ASTM Engine Coolant Standards Focus on Glycerin] {{Webarchive|url=https://web.archive.org/web/20170914125754/http://www.astmnewsroom.org/default.aspx?pageid=2115&year=2010&category=Standards%2FTechnical |date=14 September 2017}}. Astmnewsroom.org. Retrieved on 15 August 2012</ref>


In the laboratory, glycerol is a common component of solvents for [[enzymatic]] [[reagents]] stored at temperatures below {{convert|0|C|F}} due to the [[Freezing-point depression|depression of the freezing temperature]]. It is also used as a [[cryoprotectant]] where the glycerol is dissolved in water to reduce damage by ice crystals to laboratory organisms that are stored in frozen solutions, such as [[fungi]], [[bacteria]], [[nematode]]s, and mammalian embryos. Some organisms like the [[moor frog]] produce glycerol to survive freezing temperatures during hibernation.<ref name=":16">{{Cite journal |last1=Shekhovtsov |first1=Sergei V. |last2=Bulakhova |first2=Nina A. |last3=Tsentalovich |first3=Yuri P. |last4=Zelentsova |first4=Ekaterina A. |last5=Meshcheryakova |first5=Ekaterina N. |last6=Poluboyarova |first6=Tatiana V. |last7=Berman |first7=Daniil I. |date=January 2022 |title=Metabolomic Analysis Reveals That the Moor Frog ''Rana arvalis'' Uses Both Glucose and Glycerol as Cryoprotectants |journal=Animals |language=en |volume=12 |issue=10 |pages=1286 |doi=10.3390/ani12101286 |issn=2076-2615 |pmc=9137551 |pmid=35625132 |doi-access=free}}</ref>
In the laboratory, glycerol is a common component of solvents for [[enzymatic]] [[reagents]] stored at temperatures below {{convert|0|C|F}} due to the [[Freezing-point depression|depression of the freezing temperature]]. It is also used as a [[cryoprotectant]] where the glycerol is dissolved in water to reduce damage by ice crystals to laboratory organisms that are stored in frozen solutions, such as [[fungi]], [[bacteria]], [[nematode]]s, and mammalian embryos. Some organisms like the [[moor frog]] produce glycerol to survive freezing temperatures during hibernation.<ref name="Shekhovtsov-2022">{{Cite journal |last1=Shekhovtsov |first1=Sergei V. |last2=Bulakhova |first2=Nina A. |last3=Tsentalovich |first3=Yuri P. |last4=Zelentsova |first4=Ekaterina A. |last5=Meshcheryakova |first5=Ekaterina N. |last6=Poluboyarova |first6=Tatiana V. |last7=Berman |first7=Daniil I. |date=January 2022 |title=Metabolomic Analysis Reveals That the Moor Frog ''Rana arvalis'' Uses Both Glucose and Glycerol as Cryoprotectants |journal=Animals |language=en |volume=12 |issue=10 |pages=1286 |doi=10.3390/ani12101286 |issn=2076-2615 |pmc=9137551 |pmid=35625132 |doi-access=free}}</ref>


===Chemical intermediate===
===Chemical intermediate===
Glycerol is used to produce a variety of useful derivatives.
Glycerol is used to produce [[nitroglycerin]], which is an essential ingredient of various explosives such as [[dynamite]], [[gelignite]], and propellants like [[cordite]]. Reliance on soap-making to supply co-product glycerol made it difficult to increase production to meet wartime demand. Hence, synthetic glycerol processes were national defense priorities in the days leading up to World War II. Nitroglycerin, also known as glyceryl trinitrate (GTN) is commonly used to relieve [[angina pectoris]], taken in the form of [[sub-lingual]] tablets, patches, or as an [[aerosol]] spray.

[[Nitration]] gives [[nitroglycerin]], an essential ingredient of various explosives such as [[dynamite]], [[gelignite]], and propellants like [[cordite]]. Nitroglycerin under the name glyceryl trinitrate (GTN) is commonly used to relieve [[angina pectoris]], taken in the form of [[sub-lingual]] tablets, patches, or as an [[aerosol]] spray.

Trifunctional [[polyether polyol]]s are produced from glycerol and [[propylene oxide]].

Oxidation of glycerol affords [[mesoxalic acid]].<ref name="ciri2">{{cite journal |last1 = Ciriminna |first1 = Rosaria |last2 = Pagliaro |first2 = Mario |year = 2003 |title = One-Pot Homogeneous and Heterogeneous Oxidation of Glycerol to Ketomalonic Acid Mediated by TEMPO |journal = Advanced Synthesis & Catalysis |volume = 345 |issue = 3 |pages = 383–388 |doi = 10.1002/adsc.200390043}}</ref> Dehydrating glycerol affords [[hydroxyacetone]].


Chlorination of glycerol gives the [[1-chloropropane-2,3-diol]]:
Trifunctional [[polyether polyol]]s are produced from glycerol and [[propylene oxide]]. An oxidation of glycerol affords [[mesoxalic acid]].<ref name="ciri2">{{cite journal |last1 = Ciriminna |first1 = Rosaria |last2 = Pagliaro |first2 = Mario |year = 2003 |title = One-Pot Homogeneous and Heterogeneous Oxidation of Glycerol to Ketomalonic Acid Mediated by TEMPO |journal = Advanced Synthesis & Catalysis |volume = 345 |issue = 3 |pages = 383–388 |doi = 10.1002/adsc.200390043}}</ref> Dehydrating glycerol affords [[hydroxyacetone]].
: {{chem2|HOCH(CH2OH)2 + HCl -> HOCH(CH2Cl)(CH2OH) + H2O}}
The same compound can be produced by hydrolysis of epichlorohydrin.<ref>{{cite journal |doi=10.1021/cr5004002 |title=Glycerol Ether Synthesis: A Bench Test for Green Chemistry Concepts and Technologies |date=2015 |last1=Sutter |first1=Marc |last2=Silva |first2=Eric Da |last3=Duguet |first3=Nicolas |last4=Raoul |first4=Yann |last5=Métay |first5=Estelle |last6=Lemaire |first6=Marc |journal=Chemical Reviews |volume=115 |issue=16 |pages=8609–8651 |pmid=26196761 |url=https://hal.archives-ouvertes.fr/hal-01312971/file/ChemRev_2015_115_8609-8651.pdf }}</ref>


===Vibration damping===
===Vibration damping===
Line 94: Line 168:
Glycerol is used by set decorators when filming scenes involving water to prevent an area meant to look wet from drying out too quickly.<ref>[https://archive.today/20150707170726/http://www.reagent.co.uk/blog/chemicals-in-film-20th-century-fox-orders-products/ Chemicals in Film] reagent.co.uk</ref>
Glycerol is used by set decorators when filming scenes involving water to prevent an area meant to look wet from drying out too quickly.<ref>[https://archive.today/20150707170726/http://www.reagent.co.uk/blog/chemicals-in-film-20th-century-fox-orders-products/ Chemicals in Film] reagent.co.uk</ref>


Glycerine is also used in the generation of [[theatrical smoke and fog]] as a component of the fluid used in [[fog machine]]s as a replacement for glycol, which has been shown to be an irritant if exposure is prolonged.
Glycerine is also used in the generation of [[theatrical smoke and fog]] as a component of the fluid used in [[fog machine]]s as a replacement for [[glycol]], which has been shown to be an irritant if exposure is prolonged.


====Ultrasonic couplant====
====Ultrasonic couplant====
Line 103: Line 177:


===Research on additional uses===
===Research on additional uses===
Research continues into potential [[value-added]] products of glycerol obtained from biodiesel production.<ref>{{cite journal |doi= 10.1002/ep.10225 |title= The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production |year= 2007 |last1= Johnson |first1= Duane T. |last2= Taconi |first2= Katherine A. |journal= Environmental Progress |volume= 26 |issue= 4 |pages= 338–348}}</ref> Examples (aside from combustion of waste glycerol):
Research continues into potential [[value-added]] products of glycerol obtained from biodiesel production.<ref>{{cite journal |doi= 10.1002/ep.10225 |title= The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production |year= 2007 |last1= Johnson |first1= Duane T. |last2= Taconi |first2= Katherine A. |journal= Environmental Progress |volume= 26 |issue= 4 |pages= 338–348|bibcode= 2007EnvPr..26..338J }}</ref> Examples (aside from combustion of waste glycerol):
* [[Hydrogen]] [[gas]] production.<ref>{{cite journal |author1= Marshall, A. T. |author2 =Haverkamp, R. G. |title= Production of hydrogen by the electrochemical reforming of glycerol-water solutions in a PEM electrolysis cell |year= 2008 |journal= [[International Journal of Hydrogen Energy]] |volume= 33 |issue= 17 |pages= 4649–4654 |doi= 10.1016/j.ijhydene.2008.05.029}}</ref>
* [[Hydrogen]] [[gas]] production.<ref>{{cite journal |author1= Marshall, A. T. |author2 =Haverkamp, R. G. |title= Production of hydrogen by the electrochemical reforming of glycerol-water solutions in a PEM electrolysis cell |year= 2008 |journal= [[International Journal of Hydrogen Energy]] |volume= 33 |issue= 17 |pages= 4649–4654 |doi= 10.1016/j.ijhydene.2008.05.029|bibcode =2008IJHE...33.4649M }}</ref>
* [[Glycerine acetate]] is a potential fuel additive.<ref>{{cite journal |title= Acidic mesoporous silica for the acetylation of glycerol: Synthesis of bioadditives to petrol fuel |year= 2007 |journal= [[Energy & Fuels]] |volume= 21 |issue= 3 |pages= 1782–1791 |doi= 10.1021/ef060647q |last1= Melero |first1= Juan A. |last2= Van Grieken |first2= Rafael |last3= Morales |first3= Gabriel |last4= Paniagua |first4= Marta}}</ref>
* [[Glycerine acetate]] is a potential fuel additive.<ref>{{cite journal |title= Acidic mesoporous silica for the acetylation of glycerol: Synthesis of bioadditives to petrol fuel |year= 2007 |journal= [[Energy & Fuels]] |volume= 21 |issue= 3 |pages= 1782–1791 |doi= 10.1021/ef060647q |last1= Melero |first1= Juan A. |last2= Van Grieken |first2= Rafael |last3= Morales |first3= Gabriel |last4= Paniagua |first4= Marta}}</ref>
* Additive for [[starch]] thermoplastic.<ref>{{Cite journal|last1=Özeren|first1=Hüsamettin D.|last2=Olsson|first2=Richard T.|last3=Nilsson|first3=Fritjof|last4=Hedenqvist|first4=Mikael S. |date=2020-02-01|title=Prediction of plasticization in a real biopolymer system (starch) using molecular dynamics simulations |journal=Materials & Design |language=en |volume=187|pages=108387|doi=10.1016/j.matdes.2019.108387|issn=0264-1275|doi-access=free}}</ref><ref>{{Cite journal|last1=Özeren|first1=Hüsamettin Deniz|last2=Guivier|first2=Manon|last3=Olsson|first3=Richard T.|last4=Nilsson|first4=Fritjof|last5=Hedenqvist|first5=Mikael S. |date=2020-04-07|title=Ranking Plasticizers for Polymers with Atomistic Simulations; PVT, Mechanical Properties and the Role of Hydrogen Bonding in Thermoplastic Starch |journal=ACS Applied Polymer Materials |volume=2|issue=5|pages=2016–2026|doi=10.1021/acsapm.0c00191|doi-access=free}}</ref>
* Additive for [[starch]] thermoplastic.<ref>{{Cite journal|last1=Özeren|first1=Hüsamettin D.|last2=Olsson|first2=Richard T.|last3=Nilsson|first3=Fritjof|last4=Hedenqvist|first4=Mikael S. |date=2020-02-01|title=Prediction of plasticization in a real biopolymer system (starch) using molecular dynamics simulations |journal=Materials & Design |language=en |volume=187|pages=108387|doi=10.1016/j.matdes.2019.108387|issn=0264-1275|doi-access=free}}</ref><ref>{{Cite journal|last1=Özeren|first1=Hüsamettin Deniz|last2=Guivier|first2=Manon|last3=Olsson|first3=Richard T.|last4=Nilsson|first4=Fritjof|last5=Hedenqvist|first5=Mikael S. |date=2020-04-07|title=Ranking Plasticizers for Polymers with Atomistic Simulations; PVT, Mechanical Properties and the Role of Hydrogen Bonding in Thermoplastic Starch |journal=ACS Applied Polymer Materials |volume=2|issue=5|pages=2016–2026|doi=10.1021/acsapm.0c00191|doi-access=free}}</ref>
* Conversion to various other chemicals:
* Conversion to various other chemicals:
** [[Propylene glycol]]<ref>{{cite press release |title= Dow achieves another major milestone in its quest for sustainable chemistries |date= 15 March 2007 |publisher= [[Dow Chemical Company]] |url= https://www.dow.com/propyleneglycol/news/20070315b.htm |access-date= 13 July 2007 |archive-url= https://web.archive.org/web/20090916061724/https://www.dow.com/propyleneglycol/news/20070315b.htm |archive-date= 16 September 2009 |url-status= dead }}</ref>
** [[Propylene glycol]]<ref>{{cite press release |title= Dow achieves another major milestone in its quest for sustainable chemistries |date= 15 March 2007 |publisher= [[Dow Chemical Company]] |url= https://www.dow.com/propyleneglycol/news/20070315b.htm |access-date= 13 July 2007 |archive-url= https://web.archive.org/web/20090916061724/https://www.dow.com/propyleneglycol/news/20070315b.htm |archive-date= 16 September 2009 |url-status= dead }}</ref>
** [[Acrolein]]<ref>{{cite journal |doi= 10.1039/b506285c |title= The catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production |journal= [[Green Chemistry (journal)|Green Chemistry]] |volume= 8 |issue= 2 |pages= 214–220 |year= 2006 |last1= Ott |first1= L. |last2= Bicker |first2= M. |last3= Vogel |first3= H.}}</ref><ref>{{cite journal |title= Acrolein synthesis from glycerol in hot-compressed water |journal= [[Bioresource Technology]] |year= 2007 |volume= 98 |pages= 1285–1290 |doi= 10.1016/j.biortech.2006.05.007 |pmid= 16797980 |issue= 6 |last1= Watanabe |first1= Masaru |last2= Iida |first2= Toru |last3= Aizawa |first3= Yuichi |last4= Aida |first4= Taku M. |last5= Inomata |first5= Hiroshi}}</ref><ref>{{Cite journal |last1=Abdullah |first1=Anas |last2=Zuhairi Abdullah |first2=Ahmad |last3=Ahmed |first3=Mukhtar |last4=Khan |first4=Junaid |last5=Shahadat |first5=Mohammad |last6=Umar |first6=Khalid |last7=Alim |first7=Md Abdul |date=March 2022 |title=A review on recent developments and progress in sustainable acrolein production through catalytic dehydration of bio-renewable glycerol |url=https://linkinghub.elsevier.com/retrieve/pii/S0959652622005145 |journal=Journal of Cleaner Production |language=en |volume=341 |pages=130876 |doi=10.1016/j.jclepro.2022.130876|s2cid=246853148 }}</ref>
** [[Acrolein]]<ref>{{cite journal |doi= 10.1039/b506285c |title= The catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production |journal= [[Green Chemistry (journal)|Green Chemistry]] |volume= 8 |issue= 2 |pages= 214–220 |year= 2006 |last1= Ott |first1= L. |last2= Bicker |first2= M. |last3= Vogel |first3= H.}}</ref><ref>{{cite journal |title= Acrolein synthesis from glycerol in hot-compressed water |journal= [[Bioresource Technology]] |year= 2007 |volume= 98 |pages= 1285–1290 |doi= 10.1016/j.biortech.2006.05.007 |pmid= 16797980 |issue= 6 |last1= Watanabe |first1= Masaru |last2= Iida |first2= Toru |last3= Aizawa |first3= Yuichi |last4= Aida |first4= Taku M. |last5= Inomata |first5= Hiroshi|bibcode= 2007BiTec..98.1285W }}</ref><ref>{{Cite journal |last1=Abdullah |first1=Anas |last2=Zuhairi Abdullah |first2=Ahmad |last3=Ahmed |first3=Mukhtar |last4=Khan |first4=Junaid |last5=Shahadat |first5=Mohammad |last6=Umar |first6=Khalid |last7=Alim |first7=Md Abdul |date=March 2022 |title=A review on recent developments and progress in sustainable acrolein production through catalytic dehydration of bio-renewable glycerol |url=https://linkinghub.elsevier.com/retrieve/pii/S0959652622005145 |journal=Journal of Cleaner Production |language=en |volume=341 |pages=130876 |doi=10.1016/j.jclepro.2022.130876|bibcode=2022JCPro.34130876A |s2cid=246853148 }}</ref>
** [[Ethanol]]<ref name="Yazdani">{{cite journal |author1= Yazdani, S. S. |author2 =Gonzalez, R. |title= Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry |year= 2007 |journal= [[Current Opinion in Biotechnology]] |volume= 18 |issue= 3 |pages= 213–219 |doi= 10.1016/j.copbio.2007.05.002 |pmid= 17532205}}</ref><ref>{{cite press release |date=27 June 2007 |title=Engineers Find Way To Make Ethanol, Valuable Chemicals From Waste Glycerin |website=ScienceDaily |url=https://www.sciencedaily.com/releases/2007/06/070626115246.htm}}</ref>
** [[Ethanol]]<ref name="Yazdani">{{cite journal |author1= Yazdani, S. S. |author2 =Gonzalez, R. |title= Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry |year= 2007 |journal= [[Current Opinion in Biotechnology]] |volume= 18 |issue= 3 |pages= 213–219 |doi= 10.1016/j.copbio.2007.05.002 |pmid= 17532205}}</ref><ref>{{cite press release |date=27 June 2007 |title=Engineers Find Way To Make Ethanol, Valuable Chemicals From Waste Glycerin |website=ScienceDaily |url=https://www.sciencedaily.com/releases/2007/06/070626115246.htm}}</ref>
** [[Epichlorohydrin]],<ref>{{cite press release |publisher= [[Dow Chemical Company]] |url= https://epoxy.dow.com/epoxy/news/2007/20070326b.htm |title= Dow Epoxy advances glycerine-to-epichlorohydrin and liquid epoxy resins projects by choosing Shanghai site |date= 26 March 2007 |access-date= 21 February 2022 |archive-date= 8 December 2011 |archive-url= https://web.archive.org/web/20111208095306/http://epoxy.dow.com/epoxy/news/2007/20070326b.htm |url-status= live }}</ref> a raw material for [[epoxy resins]]
** [[Epichlorohydrin]],<ref>{{cite press release |publisher= [[Dow Chemical Company]] |url= https://epoxy.dow.com/epoxy/news/2007/20070326b.htm |title= Dow Epoxy advances glycerine-to-epichlorohydrin and liquid epoxy resins projects by choosing Shanghai site |date= 26 March 2007 |access-date= 21 February 2022 |archive-date= 8 December 2011 |archive-url= https://web.archive.org/web/20111208095306/http://epoxy.dow.com/epoxy/news/2007/20070326b.htm |url-status= live }}</ref> a raw material for [[epoxy resins]]
Line 120: Line 194:
Blood glycerol levels are highly elevated during [[diabetes]], and is believed to be the cause of reduced fertility in patients who suffer from diabetes and metabolic syndrome. Blood glycerol levels in diabetic patients average three times higher than healthy controls. Direct glycerol treatment of testes has been found to cause significant long-term reduction in sperm count. Further testing on this subject was abandoned due to the unexpected results, as this was not the goal of the experiment.<ref>''Molecular Human Reproduction'', Volume 23, Issue 11, November 2017, pp. 725–737</ref>
Blood glycerol levels are highly elevated during [[diabetes]], and is believed to be the cause of reduced fertility in patients who suffer from diabetes and metabolic syndrome. Blood glycerol levels in diabetic patients average three times higher than healthy controls. Direct glycerol treatment of testes has been found to cause significant long-term reduction in sperm count. Further testing on this subject was abandoned due to the unexpected results, as this was not the goal of the experiment.<ref>''Molecular Human Reproduction'', Volume 23, Issue 11, November 2017, pp. 725–737</ref>


Circulating glycerol does not [[glycate]] proteins as do glucose or fructose, and does not lead to the formation of [[advanced glycation endproduct]]s (AGEs). In some organisms, the glycerol component can enter the [[glycolysis]] pathway directly and, thus, provide energy for cellular metabolism (or, potentially, be converted to glucose through [[gluconeogenesis]]).
Circulating glycerol does not [[glycate]] proteins as do [[glucose]] or fructose, and does not lead to the formation of [[advanced glycation endproduct]]s (AGEs). In some organisms, the glycerol component can enter the [[glycolysis]] pathway directly and, thus, provide energy for cellular metabolism (or, potentially, be converted to glucose through [[gluconeogenesis]]).


Before glycerol can enter the pathway of glycolysis or gluconeogenesis (depending on physiological conditions), it must be converted to their intermediate [[glyceraldehyde 3-phosphate]] in the following steps:
Before glycerol can enter the pathway of glycolysis or gluconeogenesis (depending on physiological conditions), it must be converted to their intermediate [[glyceraldehyde 3-phosphate]] in the following steps:
Line 134: Line 208:
The enzyme [[glycerol kinase]] is present mainly in the liver and kidneys, but also in other body tissues, including muscle and brain.<ref>{{cite journal |pmc=1163884|pmid=183753|year=1976|last1=Tildon|first1=J. T.|title=Mitochondrial glycerol kinase activity in rat brain|journal=The Biochemical Journal|volume=157|issue=2|pages=513–516|last2=Stevenson|first2=J. H. Jr.|last3=Ozand|first3=P. T.|doi=10.1042/bj1570513}}</ref><ref>{{cite journal |title=Glycerol kinase activities in muscles from vertebrates and invertebrates|pmid=5801671 |pmc= 1187734 |volume=112|issue=4|date=May 1969|journal=Biochem. J.|pages=465–474|last1=Newsholme|first1=E. A.|last2=Taylor|first2=K|doi=10.1042/bj1120465}}</ref><ref>{{cite journal |vauthors= Jenkins, BT, Hajra, AK |date= 1976 |title= Glycerol Kinase and Dihydroxyacetone Kinase in Rat Brain |journal= Journal of Neurochemistry |volume= 26 |issue= 2 |pages= 377–385 |doi= 10.1111/j.1471-4159.1976.tb04491.x |pmid= 3631 |hdl= 2027.42/65297 |s2cid= 14965948 |url= https://deepblue.lib.umich.edu/bitstream/2027.42/65297/1/j.1471-4159.1976.tb04491.x.pdf |hdl-access= free |access-date= 27 August 2019 |archive-date= 21 February 2022 |archive-url= https://web.archive.org/web/20220221143240/https://deepblue.lib.umich.edu/bitstream/handle/2027.42/65297/j.1471-4159.1976.tb04491.x.pdf;jsessionid=27E5DB761F19C9F26C4F8EF4EDC33819?sequence=1 |url-status= live }}</ref> In adipose tissue, glycerol 3-phosphate is obtained from [[dihydroxyacetone phosphate]] with the enzyme [[glycerol-3-phosphate dehydrogenase]].
The enzyme [[glycerol kinase]] is present mainly in the liver and kidneys, but also in other body tissues, including muscle and brain.<ref>{{cite journal |pmc=1163884|pmid=183753|year=1976|last1=Tildon|first1=J. T.|title=Mitochondrial glycerol kinase activity in rat brain|journal=The Biochemical Journal|volume=157|issue=2|pages=513–516|last2=Stevenson|first2=J. H. Jr.|last3=Ozand|first3=P. T.|doi=10.1042/bj1570513}}</ref><ref>{{cite journal |title=Glycerol kinase activities in muscles from vertebrates and invertebrates|pmid=5801671 |pmc= 1187734 |volume=112|issue=4|date=May 1969|journal=Biochem. J.|pages=465–474|last1=Newsholme|first1=E. A.|last2=Taylor|first2=K|doi=10.1042/bj1120465}}</ref><ref>{{cite journal |vauthors= Jenkins, BT, Hajra, AK |date= 1976 |title= Glycerol Kinase and Dihydroxyacetone Kinase in Rat Brain |journal= Journal of Neurochemistry |volume= 26 |issue= 2 |pages= 377–385 |doi= 10.1111/j.1471-4159.1976.tb04491.x |pmid= 3631 |hdl= 2027.42/65297 |s2cid= 14965948 |url= https://deepblue.lib.umich.edu/bitstream/2027.42/65297/1/j.1471-4159.1976.tb04491.x.pdf |hdl-access= free |access-date= 27 August 2019 |archive-date= 21 February 2022 |archive-url= https://web.archive.org/web/20220221143240/https://deepblue.lib.umich.edu/bitstream/handle/2027.42/65297/j.1471-4159.1976.tb04491.x.pdf;jsessionid=27E5DB761F19C9F26C4F8EF4EDC33819?sequence=1 |url-status= live }}</ref> In adipose tissue, glycerol 3-phosphate is obtained from [[dihydroxyacetone phosphate]] with the enzyme [[glycerol-3-phosphate dehydrogenase]].


==Toxicity and safety==
Glycerol has very low toxicity when ingested; its [[LD50|LD<sub>50</sub>]] oral dose for rats is 12600&nbsp;mg/kg and 8700&nbsp;mg/kg for mice. It does not appear to cause toxicity when inhaled, although changes in cell maturity occurred in small sections of lung in animals under the highest dose measured. A sub-chronic 90-day nose-only inhalation study in Sprague–Dawley (SD) rats exposed to 0.03, 0.16 and 0.66&nbsp;mg/L glycerin (Per liter of air) for 6-hour continuous sessions revealed no treatment-related toxicity other than minimal [[metaplasia]] of the [[epithelium]] lining at the base of the [[epiglottis]] in rats exposed to 0.66&nbsp;mg/L glycerin.<ref>{{cite journal | year = 2017 | title = Toxicity of the main electronic cigarette components, propylene glycol, glycerin, and nicotine, in Sprague–Dawley rats in a 90-day OECD inhalation study complemented by molecular endpoints | journal = Food and Chemical Toxicology | volume = 109 | issue = Pt 1| pages = 315–332 | doi = 10.1016/j.fct.2017.09.001 | last1 = Phillips | first1 = Blaine | last2 = Titz | first2 = Bjoern | last3 = Kogel | first3 = Ulrike | last4 = Sharma | first4 = Danilal | last5 = Leroy | first5 = Patrice | last6 = Xiang | first6 = Yang | last7 = Vuillaume | first7 = Grégory | last8 = Lebrun | first8 = Stefan | last9 = Sciuscio | first9 = Davide | last10 = Ho | first10 = Jenny | last11 = Nury | first11 = Catherine | last12 = Guedj | first12 = Emmanuel | last13 = Elamin | first13 = Ashraf | last14 = Esposito | first14 = Marco | last15 = Krishnan | first15 = Subash | last16 = Schlage | first16 = Walter K. | last17 = Veljkovic | first17 = Emilija | last18 = Ivanov | first18 = Nikolai V. | last19 = Martin | first19 = Florian | last20 = Peitsch | first20 = Manuel C. | last21 = Hoeng | first21 = Julia | last22 = Vanscheeuwijck | first22 = Patrick| pmid = 28882640 | doi-access = free }}</ref><ref>{{cite journal | last1 = Renne | first1 = R. A. | last2 = Wehner | first2 = A. P. | last3 = Greenspan | first3 = B. J. | last4 = Deford | first4 = H. S. | last5 = Ragan | first5 = H. A. | last6 = Westerberg | first6 = R. B. | year = 1992 | title = 2-Week and 13-Week Inhalation Studies of Aerosolized Glycerol in Rats | journal = International Forum for Respiratory Research | volume = 4 | issue = 2| pages = 95–111 | doi = 10.3109/08958379209145307}}</ref>
Glycerol has very low toxicity when ingested; its [[LD50|LD<sub>50</sub>]] oral dose for rats is 12600&nbsp;mg/kg and 8700&nbsp;mg/kg for mice. It does not appear to cause toxicity when inhaled, although changes in cell maturity occurred in small sections of lung in animals under the highest dose measured. A sub-chronic 90-day nose-only inhalation study in Sprague–Dawley (SD) rats exposed to 0.03, 0.16 and 0.66&nbsp;mg/L glycerin (Per liter of air) for 6-hour continuous sessions revealed no treatment-related toxicity other than minimal [[metaplasia]] of the [[epithelium]] lining at the base of the [[epiglottis]] in rats exposed to 0.66&nbsp;mg/L glycerin.<ref>{{cite journal | year = 2017 | title = Toxicity of the main electronic cigarette components, propylene glycol, glycerin, and nicotine, in Sprague–Dawley rats in a 90-day OECD inhalation study complemented by molecular endpoints | journal = Food and Chemical Toxicology | volume = 109 | issue = Pt 1| pages = 315–332 | doi = 10.1016/j.fct.2017.09.001 | last1 = Phillips | first1 = Blaine | last2 = Titz | first2 = Bjoern | last3 = Kogel | first3 = Ulrike | last4 = Sharma | first4 = Danilal | last5 = Leroy | first5 = Patrice | last6 = Xiang | first6 = Yang | last7 = Vuillaume | first7 = Grégory | last8 = Lebrun | first8 = Stefan | last9 = Sciuscio | first9 = Davide | last10 = Ho | first10 = Jenny | last11 = Nury | first11 = Catherine | last12 = Guedj | first12 = Emmanuel | last13 = Elamin | first13 = Ashraf | last14 = Esposito | first14 = Marco | last15 = Krishnan | first15 = Subash | last16 = Schlage | first16 = Walter K. | last17 = Veljkovic | first17 = Emilija | last18 = Ivanov | first18 = Nikolai V. | last19 = Martin | first19 = Florian | last20 = Peitsch | first20 = Manuel C. | last21 = Hoeng | first21 = Julia | last22 = Vanscheeuwijck | first22 = Patrick| pmid = 28882640 | doi-access = free }}</ref><ref>{{cite journal | last1 = Renne | first1 = R. A. | last2 = Wehner | first2 = A. P. | last3 = Greenspan | first3 = B. J. | last4 = Deford | first4 = H. S. | last5 = Ragan | first5 = H. A. | last6 = Westerberg | first6 = R. B. | year = 1992 | title = 2-Week and 13-Week Inhalation Studies of Aerosolized Glycerol in Rats | journal = International Forum for Respiratory Research | volume = 4 | issue = 2| pages = 95–111 | doi = 10.3109/08958379209145307| bibcode = 1992InhTx...4...95R }}</ref>
===Glycerol intoxication===
Excessive consumption by children can lead to glycerol intoxication.<ref>{{Cite web |last=Burrell |first=Chloe |date=2023-06-02 |title=Perth and Kinross parents warned as 'intoxicated' kids hospitalised by slushy drinks |url=https://www.thecourier.co.uk/fp/news/perth-kinross/4445065/perth-kinross-warning-slushy-drinks/ |access-date=2023-06-03 |website=The Courier |language=en-GB}}</ref> Symptoms of intoxication include [[hypoglycemia]], [[nausea]] and a [[Syncope (medicine)|loss of consciousness]]. While intoxication as a result of excessive glycerol consumption is rare and its symptoms generally mild, occasional reports of hospitalization have occurred.<ref>{{Cite web |title=Toddler 'turned grey and passed out' after drinking Slush Puppie |url=https://www.bbc.com/news/articles/c725pzqzdgno |access-date=2024-07-31|date=2024-07-31 |website=www.bbc.com |language=en-GB}}</ref> In the United Kingdom in August 2023, manufacturers of syrup used in [[slushy|slush ice drink]]s were advised to reduce the amount of glycerol in their formulations by the Food Standards Agency to reduce the risk of intoxication.<ref>{{Cite web |title='Not suitable for under-4s': New industry guidance issued on glycerol in slush-ice drinks |url=https://www.food.gov.uk/news-alerts/news/not-suitable-for-under-4s-new-industry-guidance-issued-on-glycerol-in-slush-ice-drinks |access-date=2023-08-11 |website=Food Standards Agency |language=en}}</ref>


[[Food Standards Scotland]] advises that slush ice drinks containing glycerol should not be given to children under the age of 4, owing to the risk of intoxication. It also recommends that businesses do not use [[free refill]] offers for the drinks in venues where children under the age of 10 are likely to consume them, and that products should be appropriately labelled to inform consumers of the presence of glycerol.<ref>{{Cite web |title=Glycerol in slush ice drinks {{!}} Food Standards Scotland |url=https://www.foodstandards.gov.scot/consumers/food-safety/buying-food-eating-out/glycerol-in-slush-ice-drinks |access-date=2024-08-04 |website=www.foodstandards.gov.scot}}</ref>
==Historical cases of contamination with diethylene glycol==
==Historical cases of contamination with diethylene glycol==
On 4 May 2007, the FDA advised all U.S. makers of medicines to test all batches of glycerol for [[diethylene glycol]] contamination.<ref>{{cite web |publisher= U.S. Food and Drug Administration |url= https://www.fda.gov/bbs/topics/NEWS/2007/NEW01628.html |title= FDA Advises Manufacturers to Test Glycerin for Possible Contamination |date= 4 May 2007 |access-date= 8 May 2007 |archive-date= 7 May 2007 |archive-url= https://web.archive.org/web/20070507074219/http://www.fda.gov/bbs/topics/NEWS/2007/NEW01628.html |url-status= live}}</ref> This followed an occurrence of [[Toxic cough syrup|hundreds of fatal poisonings in Panama]] resulting from a falsified import customs declaration by Panamanian import/export firm Aduanas Javier de Gracia Express, S. A. The cheaper diethylene glycol was relabeled as the more expensive glycerol.<ref>{{cite news |author= Walt Bogdanich |date= 6 May 2007 |url= https://www.nytimes.com/2007/05/06/world/06poison.html |title= From China to Panama, a Trail of Poisoned Medicine |work= The New York Times |access-date= 8 May 2007 |author-link= Walt Bogdanich |archive-date= 26 September 2015 |archive-url= https://web.archive.org/web/20150926084342/http://www.nytimes.com/2007/05/06/world/06poison.html |url-status= live }}</ref><ref>{{cite news |date= 20 February 2013 |url= https://www.topmastersinpublichealth.com/10-biggest-medical-scandals-in-history |title= 10 Biggest Medical Scandals in History |access-date= 21 February 2022 |archive-date= 8 January 2022 |archive-url= https://web.archive.org/web/20220108074814/https://www.topmastersinpublichealth.com/10-biggest-medical-scandals-in-history/ |url-status= live }}</ref> Between 1990 and 1998, incidents of DEG poisoning reportedly occurred in Argentina, Bangladesh, India, and Nigeria, and resulted in hundreds of deaths. In 1937, more than one hundred people died in the United States after ingesting DEG-contaminated elixir sulfanilamide, a drug used to treat infections.<ref>{{Cite journal|last=Lang|first=Les|date=2007-07-01|title=FDA Issues Statement on Diethylene Glycol and Melamine Food Contamination|url=https://www.gastrojournal.org/article/S0016-5085(07)00995-X/abstract|journal=Gastroenterology|language=en|volume=133|issue=1|pages=5–6|doi=10.1053/j.gastro.2007.05.013|pmid=17631118|issn=0016-5085|access-date=25 December 2020|archive-date=21 February 2022|archive-url=https://web.archive.org/web/20220221143257/https://www.gastrojournal.org/article/S0016-5085%2807%2900995-X/fulltext|url-status=live}}</ref>
On 4 May 2007, the FDA advised all U.S. makers of medicines to test all batches of glycerol for [[diethylene glycol]] contamination.<ref>{{cite web |publisher= U.S. Food and Drug Administration |url= https://www.fda.gov/bbs/topics/NEWS/2007/NEW01628.html |title= FDA Advises Manufacturers to Test Glycerin for Possible Contamination |date= 4 May 2007 |access-date= 8 May 2007 |archive-date= 7 May 2007 |archive-url= https://web.archive.org/web/20070507074219/http://www.fda.gov/bbs/topics/NEWS/2007/NEW01628.html |url-status= live}}</ref> This followed an occurrence of [[Toxic cough syrup|hundreds of fatal poisonings in Panama]] resulting from a falsified import customs declaration by Panamanian import/export firm Aduanas Javier de Gracia Express, S. A. The cheaper diethylene glycol was relabeled as the more expensive glycerol.<ref>{{cite news |author= Walt Bogdanich |date= 6 May 2007 |url= https://www.nytimes.com/2007/05/06/world/06poison.html |title= From China to Panama, a Trail of Poisoned Medicine |work= The New York Times |access-date= 8 May 2007 |author-link= Walt Bogdanich |archive-date= 26 September 2015 |archive-url= https://web.archive.org/web/20150926084342/http://www.nytimes.com/2007/05/06/world/06poison.html |url-status= live }}</ref><ref>{{cite news |date= 20 February 2013 |url= https://www.topmastersinpublichealth.com/10-biggest-medical-scandals-in-history |title= 10 Biggest Medical Scandals in History |access-date= 21 February 2022 |archive-date= 8 January 2022 |archive-url= https://web.archive.org/web/20220108074814/https://www.topmastersinpublichealth.com/10-biggest-medical-scandals-in-history/ |url-status= live }}</ref> Between 1990 and 1998, incidents of DEG poisoning reportedly occurred in Argentina, Bangladesh, India, and Nigeria, and resulted in hundreds of deaths. In 1937, more than one hundred people died in the United States after ingesting DEG-contaminated elixir sulfanilamide, a drug used to treat infections.<ref>{{Cite journal|last=Lang|first=Les|date=2007-07-01|title=FDA Issues Statement on Diethylene Glycol and Melamine Food Contamination|url=https://www.gastrojournal.org/article/S0016-5085(07)00995-X/abstract|journal=Gastroenterology|language=en|volume=133|issue=1|pages=5–6|doi=10.1053/j.gastro.2007.05.013|pmid=17631118|issn=0016-5085|access-date=25 December 2020|archive-date=21 February 2022|archive-url=https://web.archive.org/web/20220221143257/https://www.gastrojournal.org/article/S0016-5085%2807%2900995-X/fulltext|url-status=live|doi-access=free}}</ref>


==Etymology==
==Etymology==
The origin of the ''gly-'' and ''glu''- prefixes for glycols and sugars is from [[Ancient Greek]] {{lang|grc|γλυκύς}} ''glukus'' which means sweet.<ref>[https://www.dictionary.com/browse/glyco- glyco-] {{Webarchive|url=https://web.archive.org/web/20210430152747/https://www.dictionary.com/browse/glyco- |date=30 April 2021}}, dictionary.com</ref>
The origin of the ''gly-'' and ''glu''- prefixes for [[glycol]]s and sugars is from [[Ancient Greek]] {{lang|grc|γλυκύς}} ''glukus'' which means sweet.<ref>[https://www.dictionary.com/browse/glyco- glyco-] {{Webarchive|url=https://web.archive.org/web/20210430152747/https://www.dictionary.com/browse/glyco- |date=30 April 2021}}, dictionary.com</ref> Name ''glycérine'' was coined ca. 1811 by [[Michel Eugène Chevreul]] to denote what was previously called "sweet principle of fat" by its discoverer [[Carl Wilhelm Scheele]]. It was borrowed into English ca. 1838 and in the 20th c. displaced by 1872 term glycerol featuring an alcohols' suffix -ol.


==Properties==
==Properties==
Table of thermal and physical properties of saturated liquid glycerin:<ref>{{Cite book |last=Holman |first=Jack P. |title=Heat Transfer |publisher=McGraw-Hill Companies, Inc. |year=2002 |isbn=9780072406559 |edition=9th |location=New York, NY |pages=600–606 |language=English}}</ref><ref>{{Cite book |last=Incropera 1 Dewitt 2 Bergman 3 Lavigne 4 |first=Frank P. 1 David P. 2 Theodore L. 3 Adrienne S. 4 |title=Fundamentals of Heat and Mass Transfer |publisher=John Wiley and Sons, Inc. |year=2007 |isbn=9780471457282 |edition=6th |location=Hoboken, NJ |pages=941–950 |language=English}}</ref>
Table of thermal and physical properties of saturated liquid glycerin:<ref>{{Cite book |last=Holman |first=Jack P. |title=Heat Transfer |publisher=McGraw-Hill Companies, Inc. |year=2002 |isbn=9780072406559 |edition=9th |location=New York, NY |pages=600–606 |language=English}}</ref><ref>{{Cite book |last=Incropera 1 Dewitt 2 Bergman 3 Lavigne 4 |first=Frank P. 1 David P. 2 Theodore L. 3 Adrienne S. 4 |title=Fundamentals of Heat and Mass Transfer |publisher=John Wiley and Sons, Inc. |year=2007 |isbn=9780471457282 |edition=6th |location=Hoboken, NJ |pages=941–950 |language=English}}</ref>
:{|class="wikitable mw-collapsible mw-collapsed"
: {|class="wikitable mw-collapsible mw-collapsed"
!Temperature (°C)
!Temperature (°C)
![[Density]] (kg/m<sup>3</sup>)
![[Density]] (kg/m<sup>3</sup>)

Latest revision as of 06:10, 4 December 2024

Glycerol
Glycerol
Ball-and-stick model of glycerol
Ball-and-stick model of glycerol
Space-filling model of glycerol
Space-filling model of glycerol
Sample of glycerine
Names
Preferred IUPAC name
Propane-1,2,3-triol[1]
Other names
  • 1,2,3-Trioxypropane
  • 1,2,3-Trihydroxypropane
  • 1,2,3-Propanetriol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.000.263 Edit this at Wikidata
E number E422 (thickeners, ...)
KEGG
UNII
  • InChI=1S/C3H8O3/c4-1-3(6)2-5/h3-6H,1-2H2 checkY
    Key: PEDCQBHIVMGVHV-UHFFFAOYSA-N checkY
  • InChI=1/C3H8O3/c4-1-3(6)2-5/h3-6H,1-2H2
    Key: PEDCQBHIVMGVHV-UHFFFAOYAF
  • OCC(O)CO
Properties
C3H8O3
Molar mass 92.094 g·mol−1
Appearance Colorless hygroscopic liquid
Odor Odorless
Density 1.261 g/cm3
Melting point 17.8 °C (64.0 °F; 290.9 K)
Boiling point 290 °C (554 °F; 563 K)[5]
miscible[2]
log P −2.32[3]
Vapor pressure 0.003 mmHg (0.40 Pa) at 50 °C[2]
−57.06×10−6 cm3/mol
1.4746
Viscosity 1.412 Pa·s (20 °C)[4]
Pharmacology
A06AG04 (WHO) A06AX01 (WHO), QA16QA03 (WHO)
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
1
0
Flash point 160 °C (320 °F; 433 K) (closed cup)
176 °C (349 °F; 449 K) (open cup)
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 15 mg/m3 (total)
TWA 5 mg/m3 (resp)[2]
REL (Recommended)
None established[2]
IDLH (Immediate danger)
N.D.[2]
Safety data sheet (SDS) JT Baker ver. 2008 archive
Supplementary data page
Glycerol (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Glycerol (/ˈɡlɪsərɒl/)[6] is a simple triol compound. It is a colorless, odorless, viscous liquid that is sweet-tasting and non-toxic. The glycerol backbone is found in lipids known as glycerides. It is also widely used as a sweetener in the food industry and as a humectant in pharmaceutical formulations. Because of its three hydroxyl groups, glycerol is miscible with water and is hygroscopic in nature.[7]

Modern use of the word glycerine (alternatively spelled glycerin) refers to commercial preparations of less than 100% purity, typically 95% glycerol. [8]

Structure

[edit]

Although achiral, glycerol is prochiral with respect to reactions of one of the two primary alcohols. Thus, in substituted derivatives, the stereospecific numbering labels the molecule with a sn- prefix before the stem name of the molecule.[9][10][11]

Production

[edit]

Glycerol is generally obtained from plant and animal sources where it occurs in triglycerides, esters of glycerol with long-chain carboxylic acids. The hydrolysis, saponification, or transesterification of these triglycerides produces glycerol as well as the fatty acid derivative:

3 NaOH / H2O

Rightward reaction arrow

Δ

3 × soap

3 × 

Triglycerides can be saponified with sodium hydroxide to give glycerol and fatty sodium salt or soap.

Typical plant sources include soybeans or palm. Animal-derived tallow is another source. Approximately 950,000 tons per year are produced in the United States and Europe; 350,000 tons of glycerol were produced per year in the U.S. alone from 2000 to 2004.[12] The EU directive 2003/30/EC set a requirement that 5.75% of petroleum fuels were to be replaced with biofuel sources across all member states by 2010. It was projected in 2006 that by 2020, production would be six times more than demand, creating an excess of glycerol as a byproduct of biofuel production.[7]

Glycerol from triglycerides is produced on a large scale, but the crude product is of variable quality, with a low selling price of as low as US$0.02–0.05 per kilogram in 2011.[13] It can be purified, but the process is expensive. Some glycerol is burned for energy, but its heat value is low.[14]

Crude glycerol from the hydrolysis of triglycerides can be purified by treatment with activated carbon to remove organic impurities, alkali to remove unreacted glycerol esters, and ion exchange to remove salts. High purity glycerol (greater than 99.5%) is obtained by multi-step distillation; a vacuum chamber is necessary due to its high boiling point (290 °C).[7]

Synthetic glycerol

[edit]

Because of the large-scale production of biodiesel from fats, where glycerol is a waste product, the market for glycerol is depressed. Thus, synthetic processes are not economical. Owing to oversupply, efforts are being made to convert glycerol to synthetic precursors, such as acrolein and epichlorohydrin.[15]

Although usually not cost-effective because so much is produced from processing of fats, glycerol can be produced by various routes. During World War II, synthetic glycerol processes became a national defense priority because it is a precursor to nitroglycerine. Epichlorohydrin is the most important precursor. Chlorination of propylene gives allyl chloride, which is oxidized with hypochlorite to dichlorohydrin, which reacts with a strong base to give epichlorohydrin. Epichlorohydrin can be hydrolyzed to glycerol. Chlorine-free processes from propylene include the synthesis of glycerol from acrolein and propylene oxide.[7]

Applications

[edit]

Food industry

[edit]

In food and beverages, glycerol serves as a humectant, solvent, and sweetener, and may help preserve foods. It is also used as filler in commercially prepared low-fat foods (e.g., cookies), and as a thickening agent in liqueurs. Glycerol and water are used to preserve certain types of plant leaves.[16] As a sugar substitute, it has approximately 27 kilocalories per teaspoon (sugar has 20) and is 60% as sweet as sucrose. It does not feed the bacteria that form a dental plaque and cause dental cavities.[citation needed] As a food additive, glycerol is labeled as E number E422. It is added to icing (frosting) to prevent it from setting too hard.

As used in foods, glycerol is categorized by the U.S. Academy of Nutrition and Dietetics as a carbohydrate. The U.S. Food and Drug Administration (FDA) carbohydrate designation includes all caloric macronutrients excluding protein and fat. Glycerol has a caloric density similar to table sugar, but a lower glycemic index and different metabolic pathway within the body.

It is also recommended as an additive when using polyol sweeteners such as erythritol and xylitol which have a cooling effect, due to its heating effect in the mouth, if the cooling effect is not wanted.[17]

Medical, pharmaceutical and personal care applications

[edit]
A bottle of glycerin purchased at a pharmacy
Personal lubricants commonly contain glycerol
Glycerol is an ingredient in products such as hair gel
Glycerol suppositories used as laxatives

Glycerol is used in medical, pharmaceutical and personal care preparations, often as a means of improving smoothness, providing lubrication, and as a humectant.

Ichthyosis and xerosis have been relieved by the topical use of glycerin.[18][19] It is found in allergen immunotherapies, cough syrups, elixirs and expectorants, toothpaste, mouthwashes, skin care products, shaving cream, hair care products, soaps, and water-based personal lubricants. In solid dosage forms like tablets, glycerol is used as a tablet holding agent. For human consumption, glycerol is classified by the FDA among the sugar alcohols as a caloric macronutrient. Glycerol is also used in blood banking to preserve red blood cells prior to freezing.[citation needed]

Taken rectally, glycerol functions as a laxative by irritating the anal mucosa and inducing a hyperosmotic effect,[20] expanding the colon by drawing water into it to induce peristalsis resulting in evacuation.[21] It may be administered undiluted either as a suppository or as a small-volume (2–10 ml) enema. Alternatively, it may be administered in a dilute solution, such as 5%, as a high-volume enema.[22]

Taken orally (often mixed with fruit juice to reduce its sweet taste), glycerol can cause a rapid, temporary decrease in the internal pressure of the eye. This can be useful for the initial emergency treatment of severely elevated eye pressure.[23]

In 2017, researchers showed that the probiotic Limosilactobacillus reuteri bacteria can be supplemented with glycerol to enhance its production of antimicrobial substances in the human gut. This was confirmed to be as effective as the antibiotic vancomycin at inhibiting Clostridioides difficile infection without having a significant effect on the overall microbial composition of the gut.[24]

Glycerol has also been incorporated as a component of bio-ink formulations in the field of bioprinting.[25] The glycerol content acts to add viscosity to the bio-ink without adding large protein, saccharide, or glycoprotein molecules.

Botanical extracts

[edit]

When utilized in "tincture" method extractions, specifically as a 10% solution, glycerol prevents tannins from precipitating in ethanol extracts of plants (tinctures). It is also used as an "alcohol-free" alternative to ethanol as a solvent in preparing herbal extractions. It is less extractive when utilized in a standard tincture methodology. Alcohol-based tinctures can also have the alcohol removed and replaced with glycerol for its preserving properties. Such products are not "alcohol-free" in a scientific or FDA regulatory sense, as glycerol contains three hydroxyl groups. Fluid extract manufacturers often extract herbs in hot water before adding glycerol to make glycerites.[26][27]

When used as a primary "true" alcohol-free botanical extraction solvent in non-tincture based methodologies, glycerol has been shown to possess a high degree of extractive versatility for botanicals including removal of numerous constituents and complex compounds, with an extractive power that can rival that of alcohol and water–alcohol solutions.[28] That glycerol possesses such high extractive power assumes it is utilized with dynamic (critical) methodologies as opposed to standard passive "tincturing" methodologies that are better suited to alcohol. Glycerol possesses the intrinsic property of not denaturing or rendering a botanical's constituents inert like alcohols (ethanol, methanol, and so on) do. Glycerol is a stable preserving agent for botanical extracts that, when utilized in proper concentrations in an extraction solvent base, does not allow inverting or mitigates reduction-oxidation of a finished extract's constituents, even over several years.[citation needed] Both glycerol and ethanol are viable preserving agents. Glycerol is bacteriostatic in its action, and ethanol is bactericidal in its action.[29][30][31]

Electronic cigarette liquid

[edit]
Glycerin is often used in electronic cigarettes to create the vapor

Glycerin, along with propylene glycol, is a common component of e-liquid, a solution used with electronic vaporizers (electronic cigarettes). This glycerol is heated with an atomizer (a heating coil often made of Kanthal wire), producing the aerosol that delivers nicotine to the user.[32]

Antifreeze

[edit]

Like ethylene glycol and propylene glycol, glycerol is a non-ionic kosmotrope that forms strong hydrogen bonds with water molecules, competing with water-water hydrogen bonds. This interaction disrupts the formation of ice. The minimum freezing point temperature is about −38 °C (−36 °F) corresponding to 70% glycerol in water.

Glycerol was historically used as an anti-freeze for automotive applications before being replaced by ethylene glycol, which has a lower freezing point. While the minimum freezing point of a glycerol-water mixture is higher than an ethylene glycol-water mixture, glycerol is not toxic and is being re-examined for use in automotive applications.[33][34]

In the laboratory, glycerol is a common component of solvents for enzymatic reagents stored at temperatures below 0 °C (32 °F) due to the depression of the freezing temperature. It is also used as a cryoprotectant where the glycerol is dissolved in water to reduce damage by ice crystals to laboratory organisms that are stored in frozen solutions, such as fungi, bacteria, nematodes, and mammalian embryos. Some organisms like the moor frog produce glycerol to survive freezing temperatures during hibernation.[35]

Chemical intermediate

[edit]

Glycerol is used to produce a variety of useful derivatives.

Nitration gives nitroglycerin, an essential ingredient of various explosives such as dynamite, gelignite, and propellants like cordite. Nitroglycerin under the name glyceryl trinitrate (GTN) is commonly used to relieve angina pectoris, taken in the form of sub-lingual tablets, patches, or as an aerosol spray.

Trifunctional polyether polyols are produced from glycerol and propylene oxide.

Oxidation of glycerol affords mesoxalic acid.[36] Dehydrating glycerol affords hydroxyacetone.

Chlorination of glycerol gives the 1-chloropropane-2,3-diol:

HOCH(CH2OH)2 + HCl → HOCH(CH2Cl)(CH2OH) + H2O

The same compound can be produced by hydrolysis of epichlorohydrin.[37]

Vibration damping

[edit]

Glycerol is used as fill for pressure gauges to damp vibration. External vibrations, from compressors, engines, pumps, etc., produce harmonic vibrations within Bourdon gauges that can cause the needle to move excessively, giving inaccurate readings. The excessive swinging of the needle can also damage internal gears or other components, causing premature wear. Glycerol, when poured into a gauge to replace the air space, reduces the harmonic vibrations that are transmitted to the needle, increasing the lifetime and reliability of the gauge.[38]

Niche uses

[edit]

Entertainment industry

[edit]

Glycerol is used by set decorators when filming scenes involving water to prevent an area meant to look wet from drying out too quickly.[39]

Glycerine is also used in the generation of theatrical smoke and fog as a component of the fluid used in fog machines as a replacement for glycol, which has been shown to be an irritant if exposure is prolonged.

Ultrasonic couplant

[edit]

Glycerol can be sometimes used as replacement for water in ultrasonic testing, as it has favourably higher acoustic impedance (2.42 MRayl versus 1.483 MRayl for water) while being relatively safe, non-toxic, non-corrosive and relatively low cost.[40]

Internal combustion fuel

[edit]

Glycerol is also used to power diesel generators supplying electricity for the FIA Formula E series of electric race cars.[41]

Research on additional uses

[edit]

Research continues into potential value-added products of glycerol obtained from biodiesel production.[42] Examples (aside from combustion of waste glycerol):

Metabolism

[edit]

Glycerol is a precursor for synthesis of triacylglycerols and of phospholipids in the liver and adipose tissue. When the body uses stored fat as a source of energy, glycerol and fatty acids are released into the bloodstream.

Glycerol is mainly metabolized in the liver. Glycerol injections can be used as a simple test for liver damage, as its rate of absorption by the liver is considered an accurate measure of liver health. Glycerol metabolism is reduced in both cirrhosis and fatty liver disease.[54][55]

Blood glycerol levels are highly elevated during diabetes, and is believed to be the cause of reduced fertility in patients who suffer from diabetes and metabolic syndrome. Blood glycerol levels in diabetic patients average three times higher than healthy controls. Direct glycerol treatment of testes has been found to cause significant long-term reduction in sperm count. Further testing on this subject was abandoned due to the unexpected results, as this was not the goal of the experiment.[56]

Circulating glycerol does not glycate proteins as do glucose or fructose, and does not lead to the formation of advanced glycation endproducts (AGEs). In some organisms, the glycerol component can enter the glycolysis pathway directly and, thus, provide energy for cellular metabolism (or, potentially, be converted to glucose through gluconeogenesis).

Before glycerol can enter the pathway of glycolysis or gluconeogenesis (depending on physiological conditions), it must be converted to their intermediate glyceraldehyde 3-phosphate in the following steps:

The enzyme glycerol kinase is present mainly in the liver and kidneys, but also in other body tissues, including muscle and brain.[57][58][59] In adipose tissue, glycerol 3-phosphate is obtained from dihydroxyacetone phosphate with the enzyme glycerol-3-phosphate dehydrogenase.

Toxicity and safety

[edit]

Glycerol has very low toxicity when ingested; its LD50 oral dose for rats is 12600 mg/kg and 8700 mg/kg for mice. It does not appear to cause toxicity when inhaled, although changes in cell maturity occurred in small sections of lung in animals under the highest dose measured. A sub-chronic 90-day nose-only inhalation study in Sprague–Dawley (SD) rats exposed to 0.03, 0.16 and 0.66 mg/L glycerin (Per liter of air) for 6-hour continuous sessions revealed no treatment-related toxicity other than minimal metaplasia of the epithelium lining at the base of the epiglottis in rats exposed to 0.66 mg/L glycerin.[60][61]

Glycerol intoxication

[edit]

Excessive consumption by children can lead to glycerol intoxication.[62] Symptoms of intoxication include hypoglycemia, nausea and a loss of consciousness. While intoxication as a result of excessive glycerol consumption is rare and its symptoms generally mild, occasional reports of hospitalization have occurred.[63] In the United Kingdom in August 2023, manufacturers of syrup used in slush ice drinks were advised to reduce the amount of glycerol in their formulations by the Food Standards Agency to reduce the risk of intoxication.[64]

Food Standards Scotland advises that slush ice drinks containing glycerol should not be given to children under the age of 4, owing to the risk of intoxication. It also recommends that businesses do not use free refill offers for the drinks in venues where children under the age of 10 are likely to consume them, and that products should be appropriately labelled to inform consumers of the presence of glycerol.[65]

Historical cases of contamination with diethylene glycol

[edit]

On 4 May 2007, the FDA advised all U.S. makers of medicines to test all batches of glycerol for diethylene glycol contamination.[66] This followed an occurrence of hundreds of fatal poisonings in Panama resulting from a falsified import customs declaration by Panamanian import/export firm Aduanas Javier de Gracia Express, S. A. The cheaper diethylene glycol was relabeled as the more expensive glycerol.[67][68] Between 1990 and 1998, incidents of DEG poisoning reportedly occurred in Argentina, Bangladesh, India, and Nigeria, and resulted in hundreds of deaths. In 1937, more than one hundred people died in the United States after ingesting DEG-contaminated elixir sulfanilamide, a drug used to treat infections.[69]

Etymology

[edit]

The origin of the gly- and glu- prefixes for glycols and sugars is from Ancient Greek γλυκύς glukus which means sweet.[70] Name glycérine was coined ca. 1811 by Michel Eugène Chevreul to denote what was previously called "sweet principle of fat" by its discoverer Carl Wilhelm Scheele. It was borrowed into English ca. 1838 and in the 20th c. displaced by 1872 term glycerol featuring an alcohols' suffix -ol.

Properties

[edit]

Table of thermal and physical properties of saturated liquid glycerin:[71][72]

Temperature (°C) Density (kg/m3) Specific heat (kJ/kg·K) Kinematic viscosity (m2/s) Conductivity (W/m·K) Thermal diffusivity (m2/s) Prandtl number Bulk modulus (K−1)
0 1276.03 2.261 8.31×10−3 0.282 9.83×10−8 84700 4.7×10−4
10 1270.11 2.319 3.00×10−3 0.284 9.65×10−8 31000 4.7×10−4
20 1264.02 2.386 1.18×10−3 0.286 9.47×10−8 12500 4.8×10−4
30 1258.09 2.445 5.00×10−4 0.286 9.29×10−8 5380 4.8×10−4
40 1252.01 2.512 2.20×10−4 0.286 9.14×10−8 2450 4.9×10−4
50 1244.96 2.583 1.50×10−4 0.287 8.93×10−8 1630 5.0×10−4

See also

[edit]

References

[edit]
  1. ^ International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 690. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
  2. ^ a b c d e NIOSH Pocket Guide to Chemical Hazards. "#0302". National Institute for Occupational Safety and Health (NIOSH).
  3. ^ "glycerin_msds". Archived from the original on 8 March 2020. Retrieved 7 May 2018.
  4. ^ Segur, J. B.; Oberstar, H. E. (1951). "Viscosity of Glycerol and Its Aqueous Solutions". Industrial & Engineering Chemistry. 43 (9): 2117–2120. doi:10.1021/ie50501a040.
  5. ^ Lide, D. R., ed. (1994). CRC Handbook of Data on Organic Compounds (3rd ed.). Boca Raton, FL: CRC Press. p. 4386.
  6. ^ "glycerol – Definition of glycerol in English by Oxford Dictionaries". Oxford Dictionaries – English. Archived from the original on 21 June 2016. Retrieved 21 February 2022.
  7. ^ a b c d Christoph, Ralf; Schmidt, Bernd; Steinberner, Udo; Dilla, Wolfgang; Karinen, Reetta (2006). "Glycerol". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a12_477.pub2. ISBN 3527306730.
  8. ^ "Is There any Difference Between Glycerin and Glycerol?". Oxford Dictionaries – English. 9 April 2024. Retrieved 20 October 2024.
  9. ^ Hirschmann, H. (1 October 1960). "The Nature of Substrate Asymmetry in Stereoselective Reactions". Journal of Biological Chemistry. 235 (10): 2762–2767. doi:10.1016/S0021-9258(18)64537-5. PMID 13714619.
  10. ^ "IUPAC-IUB Commission on Biochemical Nomenclature (CBN)". European Journal of Biochemistry. 2 (2): 127–131. 1 September 1967. doi:10.1111/j.1432-1033.1967.tb00116.x. PMID 6078528.
  11. ^ Alfieri A, Imperlini E, Nigro E, Vitucci D, Orrù S, Daniele A, Buono P, Mancini A (2017). "Effects of Plant Oil Interesterified Triacylglycerols on Lipemia and Human Health". International Journal of Molecular Sciences. 19 (1): E104. doi:10.3390/ijms19010104. PMC 5796054. PMID 29301208.
  12. ^ Nilles, Dave (2005). "A Glycerin Factor". Biodiesel Magazine. Archived from the original on 8 November 2007. Retrieved 21 February 2022.
  13. ^ San Kong, Pei; Kheireddine Aroua, Mohamed; Ashri Wan Daud, Wan Mohd (2016). "Conversion of crude and pure glycerol into derivatives: A feasibility evaluation". Renewable and Sustainable Energy Reviews. 63: 533–555. Bibcode:2016RSERv..63..533K. doi:10.1016/j.rser.2016.05.054.
  14. ^ Sims, Bryan (25 October 2011). "Clearing the way for byproduct quality: why quality for glycerin is just as important for biodiesel". Biodiesel Magazine. Archived from the original on 29 April 2021. Retrieved 21 February 2022.
  15. ^ Yu, Bin (2014). "Glycerol". Synlett. 25 (4): 601–602. doi:10.1055/s-0033-1340636.
  16. ^ Gouin, Francis R. (1994). "Preserving flowers and leaves" (PDF). Maryland Cooperative Extension Fact Sheet. 556: 1–6. Archived (PDF) from the original on 21 January 2018. Retrieved 20 January 2018.
  17. ^ Nikolov, Ivan (20 April 2014). "Functional Food Design Rules". Archived from the original on 30 April 2021. Retrieved 21 February 2022.
  18. ^ Ichthyosis: New Insights for the Healthcare Professional. ScholarlyEditions. 22 July 2013. p. 22. ISBN 9781481659666.
  19. ^ Mark G. Lebwohl; Warren R. Heymann; John Berth-Jones; Ian Coulson (19 September 2017). Treatment of Skin Disease E-Book: Comprehensive Therapeutic Strategies. Elsevier Health Sciences. ISBN 9780702069130.
  20. ^ "Glycerin Enema". Drugs.com. Archived from the original on 6 November 2012. Retrieved 17 November 2012.
  21. ^ "glycerin enema". NCI Drug Dictionary. National Cancer Institute. 2 February 2011. Archived from the original on 2 May 2019. Retrieved 2 May 2019.
  22. ^ E. Bertani; A. Chiappa; R. Biffi; P. P. Bianchi; D. Radice; V. Branchi; S. Spampatti; I. Vetrano; B. Andreoni (2011), "Comparison of oral polyethylene glycol plus a large volume glycerine enema with a large volume glycerine enema alone in patients undergoing colorectal surgery for malignancy: a randomized clinical trial", Colorectal Disease, 13 (10): e327–e334, doi:10.1111/j.1463-1318.2011.02689.x, PMID 21689356, S2CID 32872781
  23. ^ "Glycerin (Oral Route)". Mayo Foundation for Medical Education and Research. Archived from the original on 27 November 2012. Retrieved 17 November 2012.
  24. ^ Spinler, Jennifer K.; Auchtung, Jennifer; Brown, Aaron; Boonma, Prapaporn; Oezguen, Numan; Ross, Caná L.; Luna, Ruth Ann; Runge, Jessica; Versalovic, James; Peniche, Alex; Dann, Sara M. (October 2017). "Next-Generation Probiotics Targeting Clostridium difficile through Precursor-Directed Antimicrobial Biosynthesis". Infection and Immunity. 85 (10): e00303–17. doi:10.1128/IAI.00303-17. ISSN 1098-5522. PMC 5607411. PMID 28760934.
  25. ^ Atala, Anthony; Yoo, James J.; Carlos Kengla; Ko, In Kap; Lee, Sang Jin; Kang, Hyun-Wook (March 2016). "A 3D bioprinting system to produce human-scale tissue constructs with structural integrity". Nature Biotechnology. 34 (3): 312–319. doi:10.1038/nbt.3413. ISSN 1546-1696. PMID 26878319. S2CID 9073831.
  26. ^ Long, Walter S. (14 January 1916). "The Composition of Commercial Fruit Extracts". Transactions of the Kansas Academy of Science. 28: 157–161. doi:10.2307/3624347. JSTOR 3624347.
  27. ^ Does alcohol belong in herbal tinctures? Archived 12 October 2007 at the Wayback Machine newhope.com
  28. ^ "Glycerine: An Overview" (PDF). aciscience.org. The Soap and Detergent Association. 1990. Archived (PDF) from the original on 1 June 2019.
  29. ^ Lawrie, James W. (1928) Glycerol and the glycols – production, properties and analysis. The Chemical Catalog Company, Inc., New York, NY.
  30. ^ Leffingwell, Georgia and Lesser, Miton (1945) Glycerin – its industrial and commercial applications. Chemical Publishing Co., Brooklyn, NY.[page needed]
  31. ^ The manufacture of glycerol – Vol. III (1956). The Technical Press, LTD., London.[page needed]
  32. ^ Dasgupta, Amitava; Klein, Kimberly (2014). "4.2.5 Are Electronic Cigarettes Safe?". Antioxidants in Food, Vitamins and Supplements: Prevention and Treatment of Disease. Academic Press. ISBN 9780124059177. Archived from the original on 16 April 2021. Retrieved 16 August 2017.
  33. ^ Hudgens, R. Douglas; Hercamp, Richard D.; Francis, Jaime; Nyman, Dan A.; Bartoli, Yolanda (2007). "An Evaluation of Glycerin (Glycerol) as a Heavy Duty Engine Antifreeze/Coolant Base". SAE Technical Paper Series. Vol. 1. doi:10.4271/2007-01-4000.
  34. ^ Proposed ASTM Engine Coolant Standards Focus on Glycerin Archived 14 September 2017 at the Wayback Machine. Astmnewsroom.org. Retrieved on 15 August 2012
  35. ^ Shekhovtsov, Sergei V.; Bulakhova, Nina A.; Tsentalovich, Yuri P.; Zelentsova, Ekaterina A.; Meshcheryakova, Ekaterina N.; Poluboyarova, Tatiana V.; Berman, Daniil I. (January 2022). "Metabolomic Analysis Reveals That the Moor Frog Rana arvalis Uses Both Glucose and Glycerol as Cryoprotectants". Animals. 12 (10): 1286. doi:10.3390/ani12101286. ISSN 2076-2615. PMC 9137551. PMID 35625132.
  36. ^ Ciriminna, Rosaria; Pagliaro, Mario (2003). "One-Pot Homogeneous and Heterogeneous Oxidation of Glycerol to Ketomalonic Acid Mediated by TEMPO". Advanced Synthesis & Catalysis. 345 (3): 383–388. doi:10.1002/adsc.200390043.
  37. ^ Sutter, Marc; Silva, Eric Da; Duguet, Nicolas; Raoul, Yann; Métay, Estelle; Lemaire, Marc (2015). "Glycerol Ether Synthesis: A Bench Test for Green Chemistry Concepts and Technologies" (PDF). Chemical Reviews. 115 (16): 8609–8651. doi:10.1021/cr5004002. PMID 26196761.
  38. ^ Pneumatic Systems: Principles and Maintenance by S. R. Majumdar. McGraw-Hill, 2006, p. 74 [ISBN missing]
  39. ^ Chemicals in Film reagent.co.uk
  40. ^ Acoustic Properties for Liquids Archived 27 October 2016 at the Wayback Machine nde-ed.org
  41. ^ Formula E uses pollution-free glycerine to charge cars. fiaformulae.com. 13 September 2014
  42. ^ Johnson, Duane T.; Taconi, Katherine A. (2007). "The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production". Environmental Progress. 26 (4): 338–348. Bibcode:2007EnvPr..26..338J. doi:10.1002/ep.10225.
  43. ^ Marshall, A. T.; Haverkamp, R. G. (2008). "Production of hydrogen by the electrochemical reforming of glycerol-water solutions in a PEM electrolysis cell". International Journal of Hydrogen Energy. 33 (17): 4649–4654. Bibcode:2008IJHE...33.4649M. doi:10.1016/j.ijhydene.2008.05.029.
  44. ^ Melero, Juan A.; Van Grieken, Rafael; Morales, Gabriel; Paniagua, Marta (2007). "Acidic mesoporous silica for the acetylation of glycerol: Synthesis of bioadditives to petrol fuel". Energy & Fuels. 21 (3): 1782–1791. doi:10.1021/ef060647q.
  45. ^ Özeren, Hüsamettin D.; Olsson, Richard T.; Nilsson, Fritjof; Hedenqvist, Mikael S. (1 February 2020). "Prediction of plasticization in a real biopolymer system (starch) using molecular dynamics simulations". Materials & Design. 187: 108387. doi:10.1016/j.matdes.2019.108387. ISSN 0264-1275.
  46. ^ Özeren, Hüsamettin Deniz; Guivier, Manon; Olsson, Richard T.; Nilsson, Fritjof; Hedenqvist, Mikael S. (7 April 2020). "Ranking Plasticizers for Polymers with Atomistic Simulations; PVT, Mechanical Properties and the Role of Hydrogen Bonding in Thermoplastic Starch". ACS Applied Polymer Materials. 2 (5): 2016–2026. doi:10.1021/acsapm.0c00191.
  47. ^ "Dow achieves another major milestone in its quest for sustainable chemistries" (Press release). Dow Chemical Company. 15 March 2007. Archived from the original on 16 September 2009. Retrieved 13 July 2007.
  48. ^ Ott, L.; Bicker, M.; Vogel, H. (2006). "The catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production". Green Chemistry. 8 (2): 214–220. doi:10.1039/b506285c.
  49. ^ Watanabe, Masaru; Iida, Toru; Aizawa, Yuichi; Aida, Taku M.; Inomata, Hiroshi (2007). "Acrolein synthesis from glycerol in hot-compressed water". Bioresource Technology. 98 (6): 1285–1290. Bibcode:2007BiTec..98.1285W. doi:10.1016/j.biortech.2006.05.007. PMID 16797980.
  50. ^ Abdullah, Anas; Zuhairi Abdullah, Ahmad; Ahmed, Mukhtar; Khan, Junaid; Shahadat, Mohammad; Umar, Khalid; Alim, Md Abdul (March 2022). "A review on recent developments and progress in sustainable acrolein production through catalytic dehydration of bio-renewable glycerol". Journal of Cleaner Production. 341: 130876. Bibcode:2022JCPro.34130876A. doi:10.1016/j.jclepro.2022.130876. S2CID 246853148.
  51. ^ Yazdani, S. S.; Gonzalez, R. (2007). "Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry". Current Opinion in Biotechnology. 18 (3): 213–219. doi:10.1016/j.copbio.2007.05.002. PMID 17532205.
  52. ^ "Engineers Find Way To Make Ethanol, Valuable Chemicals From Waste Glycerin". ScienceDaily (Press release). 27 June 2007.
  53. ^ "Dow Epoxy advances glycerine-to-epichlorohydrin and liquid epoxy resins projects by choosing Shanghai site" (Press release). Dow Chemical Company. 26 March 2007. Archived from the original on 8 December 2011. Retrieved 21 February 2022.
  54. ^ Glycerol clearance in alcoholic liver disease. Gut (British Society of Gastroenterology). 1982 Apr; 23(4): 257–264. D G Johnston, K G Alberti, R Wright, P G Blain
  55. ^ "Fatty liver disrupts glycerol metabolism in gluconeogenic and lipogenic pathways in humans". September 2018 The Journal of Lipid Research, 59, 1685–1694. Jeffrey D. Browning, Eunsook S. Jin1, Rebecca E. Murphy, and Craig R. Malloy
  56. ^ Molecular Human Reproduction, Volume 23, Issue 11, November 2017, pp. 725–737
  57. ^ Tildon, J. T.; Stevenson, J. H. Jr.; Ozand, P. T. (1976). "Mitochondrial glycerol kinase activity in rat brain". The Biochemical Journal. 157 (2): 513–516. doi:10.1042/bj1570513. PMC 1163884. PMID 183753.
  58. ^ Newsholme, E. A.; Taylor, K (May 1969). "Glycerol kinase activities in muscles from vertebrates and invertebrates". Biochem. J. 112 (4): 465–474. doi:10.1042/bj1120465. PMC 1187734. PMID 5801671.
  59. ^ Jenkins, BT, Hajra, AK (1976). "Glycerol Kinase and Dihydroxyacetone Kinase in Rat Brain" (PDF). Journal of Neurochemistry. 26 (2): 377–385. doi:10.1111/j.1471-4159.1976.tb04491.x. hdl:2027.42/65297. PMID 3631. S2CID 14965948. Archived from the original on 21 February 2022. Retrieved 27 August 2019.
  60. ^ Phillips, Blaine; Titz, Bjoern; Kogel, Ulrike; Sharma, Danilal; Leroy, Patrice; Xiang, Yang; Vuillaume, Grégory; Lebrun, Stefan; Sciuscio, Davide; Ho, Jenny; Nury, Catherine; Guedj, Emmanuel; Elamin, Ashraf; Esposito, Marco; Krishnan, Subash; Schlage, Walter K.; Veljkovic, Emilija; Ivanov, Nikolai V.; Martin, Florian; Peitsch, Manuel C.; Hoeng, Julia; Vanscheeuwijck, Patrick (2017). "Toxicity of the main electronic cigarette components, propylene glycol, glycerin, and nicotine, in Sprague–Dawley rats in a 90-day OECD inhalation study complemented by molecular endpoints". Food and Chemical Toxicology. 109 (Pt 1): 315–332. doi:10.1016/j.fct.2017.09.001. PMID 28882640.
  61. ^ Renne, R. A.; Wehner, A. P.; Greenspan, B. J.; Deford, H. S.; Ragan, H. A.; Westerberg, R. B. (1992). "2-Week and 13-Week Inhalation Studies of Aerosolized Glycerol in Rats". International Forum for Respiratory Research. 4 (2): 95–111. Bibcode:1992InhTx...4...95R. doi:10.3109/08958379209145307.
  62. ^ Burrell, Chloe (2 June 2023). "Perth and Kinross parents warned as 'intoxicated' kids hospitalised by slushy drinks". The Courier. Retrieved 3 June 2023.
  63. ^ "Toddler 'turned grey and passed out' after drinking Slush Puppie". www.bbc.com. 31 July 2024. Retrieved 31 July 2024.
  64. ^ "'Not suitable for under-4s': New industry guidance issued on glycerol in slush-ice drinks". Food Standards Agency. Retrieved 11 August 2023.
  65. ^ "Glycerol in slush ice drinks | Food Standards Scotland". www.foodstandards.gov.scot. Retrieved 4 August 2024.
  66. ^ "FDA Advises Manufacturers to Test Glycerin for Possible Contamination". U.S. Food and Drug Administration. 4 May 2007. Archived from the original on 7 May 2007. Retrieved 8 May 2007.
  67. ^ Walt Bogdanich (6 May 2007). "From China to Panama, a Trail of Poisoned Medicine". The New York Times. Archived from the original on 26 September 2015. Retrieved 8 May 2007.
  68. ^ "10 Biggest Medical Scandals in History". 20 February 2013. Archived from the original on 8 January 2022. Retrieved 21 February 2022.
  69. ^ Lang, Les (1 July 2007). "FDA Issues Statement on Diethylene Glycol and Melamine Food Contamination". Gastroenterology. 133 (1): 5–6. doi:10.1053/j.gastro.2007.05.013. ISSN 0016-5085. PMID 17631118. Archived from the original on 21 February 2022. Retrieved 25 December 2020.
  70. ^ glyco- Archived 30 April 2021 at the Wayback Machine, dictionary.com
  71. ^ Holman, Jack P. (2002). Heat Transfer (9th ed.). New York, NY: McGraw-Hill Companies, Inc. pp. 600–606. ISBN 9780072406559.
  72. ^ Incropera 1 Dewitt 2 Bergman 3 Lavigne 4, Frank P. 1 David P. 2 Theodore L. 3 Adrienne S. 4 (2007). Fundamentals of Heat and Mass Transfer (6th ed.). Hoboken, NJ: John Wiley and Sons, Inc. pp. 941–950. ISBN 9780471457282.{{cite book}}: CS1 maint: numeric names: authors list (link)
[edit]