Jump to content

Isotopes of sodium: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
+
Tags: Reverted Visual edit Mobile edit Mobile web edit
OAbot (talk | contribs)
m Open access bot: arxiv updated in citation with #oabot.
 
(45 intermediate revisions by 28 users not shown)
Line 1: Line 1:
{{Short description|Nuclides with atomic number of 11 but with different mass numbers}}
{{Short description|none}}
{{Infobox sodium isotopes}}
{{more footnotes needed|date=August 2017}}
There are 20 isotopes of [[sodium]] (<sub>11</sub>Na), ranging from {{chem|17|Na}} to {{chem|39|Na}} (except for the still-unknown <sup>36</sup>Na and <sup>38</sup>Na),<ref name="RikenNa39">{{cite journal |last=Ahn |first=D.S. |display-authors=etal |title=Discovery of <sup>39</sup>Na |journal=[[Physical Review Letters]] |volume=129 |issue=21 |article-number=212502 |date=2022-11-14 |page=212502 |doi=10.1103/PhysRevLett.129.212502|pmid=36461972 |bibcode=2022PhRvL.129u2502A |s2cid=253591660 |doi-access=free }}</ref> and five [[nuclear isomer|isomers]] (two for {{chem|22|Na}}, and one each for {{chem|24|Na}}, {{chem|26|Na}}, and {{chem|32|Na}}). {{chem|23|Na}} is the only [[stable nuclide|stable]] (and the only [[primordial nuclide|primordial]]) isotope. It is considered a [[monoisotopic element]] and it has a [[standard atomic weight]] of {{val|22.98976928|(2)}}. Sodium has two [[radioactive]] [[cosmogenic]] isotopes ({{chem|22|Na}}, with a [[half-life]] of {{val|2.6019|(6)|u=years}};{{refn|group=nb|name=NUBASE2020 tropical year|Note that NUBASE2020 uses the [[tropical year]] to convert between years and other units of time, not the [[Gregorian year]]. The relationship between years and other time units in NUBASE2020 is as follows: {{nowrap|1=1 y = 365.2422 d = 31 556 926 s}} }} and {{chem|link=Sodium-24|24|Na}}, with a half-life of {{val|14.9560|(15)|u=hours}}). With the exception of those two isotopes, all other isotopes have [[half-lives]] under a minute, most under a second. The shortest-lived is the unbound {{chem|18|Na}}, with a half-life of {{val|1.3|(4)|e=−21}} seconds (although the half-life of the similarly unbound <sup>17</sup>Na is not measured).
{{infobox sodium isotopes}}
There are 22 isotopes of [[sodium]] (<sub>11</sub>Na), ranging from {{chem|17|Na}} to {{chem|39|Na}},<ref name="Riken51">{{cite report |last=Ahn |first=D.S. |display-authors=etal |title=New isotope of <sup>39</sup>Na and the neutron dripline of neon isotopes using a 345 MeV/nucleon <sup>48</sup>Ca beam |series=RIKEN Accelerator Progress Reports |volume=51 |pages=82 |date=2018 |url=https://www.nishina.riken.jp/researcher/APR/APR051/pdf/82.pdf}}</ref> and two [[nuclear isomer|isomers]] ({{chem|22m|Na}} and {{chem|24m|Na}}). {{chem|23|Na}} is the only [[stable nuclide|stable]] (and the only [[primordial nuclide|primordial]]) isotope. It is considered a [[monoisotopic element]] and it has a [[standard atomic weight]] of {{val|22.98976928|(2)}}. Sodium has two [[radioactive]] [[Cosmogenic nuclide|cosmogenic]] isotopes ({{chem|22|Na}}, with a [[half-life]] of {{val|2.6019|(6)|u=years}};{{refn|group=nb|name=NUBASE2020 tropical year|Note that NUBASE2020 uses the [[tropical year]] to convert between years and other units of time, not the [[Gregorian year]]. The relationship between years and other time units in NUBASE2020 is as follows: {{nowrap|1=1 y = 365.2422 d = 31 556 926 s}} }} and {{chem|link=Sodium-24|24|Na}}, with a half-life of {{val|14.9560|(15)|u=hours}}). With the exception of those two isotopes, all other isotopes have [[half-life|half-lives]] under a minute, most under a second. The shortest-lived is {{chem|18|Na}}, with a half-life of {{val|1.3|(4)|e=−21}} seconds.


Acute neutron radiation exposure (e.g., from a nuclear [[criticality accident]]) converts some of the stable {{chem|23|Na}} in human blood plasma to {{chem|24|Na}}. By measuring the concentration of this isotope, the neutron radiation dosage to the victim can be computed.
Acute neutron radiation exposure (e.g., from a nuclear [[criticality accident]]) converts some of the stable {{chem|23|Na}} (in the form of Na<sup>+</sup> ion) in human blood plasma to {{chem|24|Na}}. By measuring the concentration of this isotope, the neutron radiation dosage to the victim can be computed.


{{chem|22|Na}} is a [[positron]]-emitting isotope with a remarkably long half-life. It is used to create test-objects and point-sources for [[positron emission tomography]].
{{chem|22|Na}} is a [[positron]]-emitting isotope with a remarkably long half-life. It is used to create test-objects and point-sources for [[positron emission tomography]].


== List of isotopes ==
== List of isotopes ==
{{Anchor|Sodium-22m|Sodium-36|Sodium-38}}

<!--Please delete anchor(s) from the list above or table below if adding a dedicated isotope section(s).-->

{{Isotopes table
{{Isotopes table
|symbol=Na
|symbol=Na
Line 15: Line 18:
}}
}}
|-
|-
| {{SimpleNuclide|Sodium|17}}
| {{anchor|Sodium-17}}{{SimpleNuclide|Sodium|17}}
| style="text-align:right" | 11
| style="text-align:right" | 11
| style="text-align:right" | 6
| style="text-align:right" | 6
Line 23: Line 26:
| {{SimpleNuclide|Neon|16}}
| {{SimpleNuclide|Neon|16}}
| (1/2+)
| (1/2+)
|
|
|
|-
|-
| {{SimpleNuclide|Sodium|18}}
| {{anchor|Sodium-18}}{{SimpleNuclide|Sodium|18}}
| style="text-align:right" | 11
| style="text-align:right" | 11
| style="text-align:right" | 7
| style="text-align:right" | 7
Line 34: Line 36:
| {{SimpleNuclide|Neon|17}}
| {{SimpleNuclide|Neon|17}}
| 1−#
| 1−#
|
|
|
|-
|-
| {{SimpleNuclide|Sodium|19}}
| {{anchor|Sodium-19}}{{SimpleNuclide|Sodium|19}}
| style="text-align:right" | 11
| style="text-align:right" | 11
| style="text-align:right" | 8
| style="text-align:right" | 8
Line 45: Line 46:
| {{SimpleNuclide|Neon|18}}
| {{SimpleNuclide|Neon|18}}
| (5/2+)
| (5/2+)
|
|
|
|-
|-
| rowspan=2|{{SimpleNuclide|Sodium|20}}
| rowspan=2|{{anchor|Sodium-20}}{{SimpleNuclide|Sodium|20}}
| rowspan=2 style="text-align:right" | 11
| rowspan=2 style="text-align:right" | 11
| rowspan=2 style="text-align:right" | 9
| rowspan=2 style="text-align:right" | 9
Line 56: Line 56:
| '''{{SimpleNuclide|Neon|20}}'''
| '''{{SimpleNuclide|Neon|20}}'''
| rowspan=2|2+
| rowspan=2|2+
| rowspan=2|
| rowspan=2|
| rowspan=2|
|-
|-
Line 62: Line 61:
| '''{{SimpleNuclide|Oxygen|16}}'''
| '''{{SimpleNuclide|Oxygen|16}}'''
|-
|-
| {{SimpleNuclide|Sodium|21}}
| {{anchor|Sodium-21}}{{SimpleNuclide|Sodium|21}}
| style="text-align:right" | 11
| style="text-align:right" | 11
| style="text-align:right" | 10
| style="text-align:right" | 10
Line 70: Line 69:
| '''{{SimpleNuclide|Neon|21}}'''
| '''{{SimpleNuclide|Neon|21}}'''
| 3/2+
| 3/2+
|
|
|
|-
|-
Line 78: Line 76:
| rowspan=2|{{val|21.99443742|(18)}}
| rowspan=2|{{val|21.99443742|(18)}}
| rowspan=2|{{val|2.6019|(6)|u=y}}{{refn|group=nb|name=NUBASE2020 tropical year}}
| rowspan=2|{{val|2.6019|(6)|u=y}}{{refn|group=nb|name=NUBASE2020 tropical year}}
| e<sup>+</sup> ({{val|90.57|(8)|u=%}})
| β<sup>+</sup> ({{val|90.57|(8)|u=%}})
| '''{{SimpleNuclide|Neon|22}}'''
| '''{{SimpleNuclide|Neon|22}}'''
| rowspan=2|3+
| rowspan=2|3+
| rowspan=2|Trace<ref group="n" name="t">[[Cosmogenic nuclide]]</ref>
| rowspan=2|Trace<ref group="n" name="t">[[Cosmogenic nuclide]]</ref>
| rowspan=2|
|-
|-
| [[Electron capture|ε]] ({{val|9.43|(6)|u=%}})
| [[Electron capture|ε]] ({{val|9.43|(6)|u=%}})
| '''{{SimpleNuclide|Neon|22}}'''
| '''{{SimpleNuclide|Neon|22}}'''
|-id=Sodium-22m1
|-
| style="text-indent:1em" | {{SimpleNuclide|Sodium|22m1}}
| style="text-indent:1em" | {{SimpleNuclide|Sodium|22m1}}
| colspan="3" style="text-indent:2em" | {{val|583.05|(10)|u=keV}}
| colspan="3" style="text-indent:2em" | {{val|583.05|(10)|u=keV}}
Line 94: Line 91:
| 1+
| 1+
|
|
|-id=Sodium-22m2
|
|-
| style="text-indent:1em" | {{SimpleNuclide|Sodium|22m2}}
| style="text-indent:1em" | {{SimpleNuclide|Sodium|22m2}}
| colspan="3" style="text-indent:2em" | {{val|657.00|(14)|u=keV}}
| colspan="3" style="text-indent:2em" | {{val|657.00|(14)|u=keV}}
Line 102: Line 98:
| {{SimpleNuclide|Sodium|22}}
| {{SimpleNuclide|Sodium|22}}
| 0+
| 0+
|
|
|
|-
|-
Line 111: Line 106:
| colspan=3 align=center|'''Stable'''
| colspan=3 align=center|'''Stable'''
| 3/2+
| 3/2+
| colspan=2 style="text-align:center"|{{val|1}}
| style="text-align:center"|{{val|1}}
|-
|-
| [[Sodium-24|{{SimpleNuclide|Sodium|24}}]]
| [[Sodium-24|{{SimpleNuclide|Sodium|24}}]]
Line 122: Line 117:
| 4+
| 4+
| Trace<ref group="n" name="t" />
| Trace<ref group="n" name="t" />
|-id=Sodium-24m
|
|-
| rowspan=2 style="text-indent:1em" | {{SimpleNuclide|Sodium|24m}}
| rowspan=2 style="text-indent:1em" | {{SimpleNuclide|Sodium|24m}}
| rowspan=2 colspan="3" style="text-indent:2em" | {{val|472.2074|(8)|u=keV}}
| rowspan=2 colspan="3" style="text-indent:2em" | {{val|472.2074|(8)|u=keV}}
Line 130: Line 124:
| {{SimpleNuclide|Sodium|24}}
| {{SimpleNuclide|Sodium|24}}
| rowspan=2|1+
| rowspan=2|1+
| rowspan=2|
| rowspan=2|
| rowspan=2|
|-
|-
Line 136: Line 129:
| '''{{SimpleNuclide|Magnesium|24}}'''
| '''{{SimpleNuclide|Magnesium|24}}'''
|-
|-
| {{SimpleNuclide|Sodium|25}}
| {{anchor|Sodium-25}}{{SimpleNuclide|Sodium|25}}
| style="text-align:right" | 11
| style="text-align:right" | 11
| style="text-align:right" | 14
| style="text-align:right" | 14
Line 144: Line 137:
| '''{{SimpleNuclide|Magnesium|25}}'''
| '''{{SimpleNuclide|Magnesium|25}}'''
| 5/2+
| 5/2+
|
|
|
|-
|-
| {{SimpleNuclide|Sodium|26}}
| {{anchor|Sodium-26}}{{SimpleNuclide|Sodium|26}}
| style="text-align:right" | 11
| style="text-align:right" | 11
| style="text-align:right" | 15
| style="text-align:right" | 15
Line 156: Line 148:
| 3+
| 3+
|
|
|-id=Sodium-26m
|
|-
| style="text-indent:1em" | {{SimpleNuclide|Sodium|26m}}
| style="text-indent:1em" | {{SimpleNuclide|Sodium|26m}}
| colspan="3" style="text-indent:2em" | {{val|82.4|(4)|u=keV}}
| colspan="3" style="text-indent:2em" | {{val|82.4|(4)|u=keV}}
| {{val|4.35|(16)|u=µs}}
| {{val|4.35|(16)|u=μs}}
| IT
| IT
| {{SimpleNuclide|Sodium|26}}
| {{SimpleNuclide|Sodium|26}}
| 1+
| 1+
|
|
|
|-
|-
| rowspan=2|{{SimpleNuclide|Sodium|27}}
| rowspan=2|{{anchor|Sodium-27}}{{SimpleNuclide|Sodium|27}}
| rowspan=2 style="text-align:right" | 11
| rowspan=2 style="text-align:right" | 11
| rowspan=2 style="text-align:right" | 16
| rowspan=2 style="text-align:right" | 16
Line 175: Line 165:
| {{SimpleNuclide|Magnesium|27}}
| {{SimpleNuclide|Magnesium|27}}
| rowspan=2|5/2+
| rowspan=2|5/2+
| rowspan=2|
| rowspan=2|
| rowspan=2|
|-
|-
Line 181: Line 170:
| '''{{SimpleNuclide|Magnesium|26}}'''
| '''{{SimpleNuclide|Magnesium|26}}'''
|-
|-
| rowspan=2|{{SimpleNuclide|Sodium|28}}
| rowspan=2|{{anchor|Sodium-28}}{{SimpleNuclide|Sodium|28}}
| rowspan=2 style="text-align:right" | 11
| rowspan=2 style="text-align:right" | 11
| rowspan=2 style="text-align:right" | 17
| rowspan=2 style="text-align:right" | 17
Line 189: Line 178:
| {{SimpleNuclide|Magnesium|28}}
| {{SimpleNuclide|Magnesium|28}}
| rowspan=2|1+
| rowspan=2|1+
| rowspan=2|
| rowspan=2|
| rowspan=2|
|-
|-
Line 195: Line 183:
| {{SimpleNuclide|Magnesium|27}}
| {{SimpleNuclide|Magnesium|27}}
|-
|-
| rowspan=3|{{SimpleNuclide|Sodium|29}}
| rowspan=3|{{anchor|Sodium-29}}{{SimpleNuclide|Sodium|29}}
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 18
| rowspan=3 style="text-align:right" | 18
Line 203: Line 191:
| {{SimpleNuclide|Magnesium|29}}
| {{SimpleNuclide|Magnesium|29}}
| rowspan=3|3/2+
| rowspan=3|3/2+
| rowspan=3|
| rowspan=3|
| rowspan=3|
|-
|-
Line 212: Line 199:
| {{SimpleNuclide|Magnesium|27}} ?
| {{SimpleNuclide|Magnesium|27}} ?
|-
|-
| rowspan=4|{{SimpleNuclide|Sodium|30}}
| rowspan=4|{{anchor|Sodium-30}}{{SimpleNuclide|Sodium|30}}
| rowspan=4 style="text-align:right" | 11
| rowspan=4 style="text-align:right" | 11
| rowspan=4 style="text-align:right" | 19
| rowspan=4 style="text-align:right" | 19
Line 220: Line 207:
| {{SimpleNuclide|Magnesium|30}}
| {{SimpleNuclide|Magnesium|30}}
| rowspan=4|2+
| rowspan=4|2+
| rowspan=4|
| rowspan=4|
| rowspan=4|
|-
|-
Line 232: Line 218:
| {{SimpleNuclide|Neon|26}}
| {{SimpleNuclide|Neon|26}}
|-
|-
| rowspan=4|{{SimpleNuclide|Sodium|31}}
| rowspan=4|{{anchor|Sodium-31}}{{SimpleNuclide|Sodium|31}}
| rowspan=4 style="text-align:right" | 11
| rowspan=4 style="text-align:right" | 11
| rowspan=4 style="text-align:right" | 20
| rowspan=4 style="text-align:right" | 20
Line 240: Line 226:
| {{SimpleNuclide|Magnesium|31}}
| {{SimpleNuclide|Magnesium|31}}
| rowspan=4|3/2+
| rowspan=4|3/2+
| rowspan=4|
| rowspan=4|
| rowspan=4|
|-
|-
Line 252: Line 237:
| {{SimpleNuclide|Magnesium|28}}
| {{SimpleNuclide|Magnesium|28}}
|-
|-
| rowspan=3|{{SimpleNuclide|Sodium|32}}
| rowspan=3|{{anchor|Sodium-32}}{{SimpleNuclide|Sodium|32}}
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 21
| rowspan=3 style="text-align:right" | 21
Line 260: Line 245:
| {{SimpleNuclide|Magnesium|32}}
| {{SimpleNuclide|Magnesium|32}}
| rowspan=3|(3−)
| rowspan=3|(3−)
| rowspan=3|
| rowspan=3|
| rowspan=3|
|-
|-
Line 268: Line 252:
| β<sup>−</sup>2n ({{val|7.6|(1.5)|u=%}})
| β<sup>−</sup>2n ({{val|7.6|(1.5)|u=%}})
| {{SimpleNuclide|Magnesium|30}}
| {{SimpleNuclide|Magnesium|30}}
|-id=Sodium-32m
| style="text-indent:1em" | {{SimpleNuclide|Sodium|32m}}<ref>{{cite journal |last1=Gray |first1=T. J. |last2=Allmond |first2=J. M. |last3=Xu |first3=Z. |last4=King |first4=T. T. |last5=Lubna |first5=R. S. |last6=Crawford |first6=H. L. |last7=Tripathi |first7=V. |last8=Crider |first8=B. P. |last9=Grzywacz |first9=R. |last10=Liddick |first10=S. N. |last11=Macchiavelli |first11=A. O. |last12=Miyagi |first12=T. |last13=Poves |first13=A. |last14=Andalib |first14=A. |last15=Argo |first15=E. |last16=Benetti |first16=C. |last17=Bhattacharya |first17=S. |last18=Campbell |first18=C. M. |last19=Carpenter |first19=M. P. |last20=Chan |first20=J. |last21=Chester |first21=A. |last22=Christie |first22=J. |last23=Clark |first23=B. R. |last24=Cox |first24=I. |last25=Doetsch |first25=A. A. |last26=Dopfer |first26=J. |last27=Duarte |first27=J. G. |last28=Fallon |first28=P. |last29=Frotscher |first29=A. |last30=Gaballah |first30=T. |last31=Harke |first31=J. T. |last32=Heideman |first32=J. |last33=Huegen |first33=H. |last34=Holt |first34=J. D. |last35=Jain |first35=R. |last36=Kitamura |first36=N. |last37=Kolos |first37=K. |last38=Kondev |first38=F. G. |last39=Laminack |first39=A. |last40=Longfellow |first40=B. |last41=Luitel |first41=S. |last42=Madurga |first42=M. |last43=Mahajan |first43=R. |last44=Mogannam |first44=M. J. |last45=Morse |first45=C. |last46=Neupane |first46=S. |last47=Nowicki |first47=A. |last48=Ogunbeku |first48=T. H. |last49=Ong |first49=W.-J. |last50=Porzio |first50=C. |last51=Prokop |first51=C. J. |last52=Rasco |first52=B. C. |last53=Ronning |first53=E. K. |last54=Rubino |first54=E. |last55=Ruland |first55=T. J. |last56=Rykaczewski |first56=K. P. |last57=Schaedig |first57=L. |last58=Seweryniak |first58=D. |last59=Siegl |first59=K. |last60=Singh |first60=M. |last61=Stuchbery |first61=A. E. |last62=Tabor |first62=S. L. |last63=Tang |first63=T. L. |last64=Wheeler |first64=T. |last65=Winger |first65=J. A. |last66=Wood |first66=J. L. |title=Microsecond Isomer at the N = 20 Island of Shape Inversion Observed at FRIB |journal=Physical Review Letters |date=13 June 2023 |volume=130 |issue=24 |doi=10.1103/PhysRevLett.130.242501|arxiv=2302.11607 }}</ref>
| colspan="3" style="text-indent:2em" | {{val|625|u=keV}}
| {{val|24|(2)|u=μs}}
| IT
| {{SimpleNuclide|Sodium|32}}
| (0+,6−)
|
|-
|-
| rowspan=3|{{SimpleNuclide|Sodium|33}}
| rowspan=3|{{anchor|Sodium-33}}{{SimpleNuclide|Sodium|33}}
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 22
| rowspan=3 style="text-align:right" | 22
Line 277: Line 269:
| {{SimpleNuclide|Magnesium|32}}
| {{SimpleNuclide|Magnesium|32}}
| rowspan=3|(3/2+)
| rowspan=3|(3/2+)
| rowspan=3|
| rowspan=3|
| rowspan=3|
|-
|-
Line 286: Line 277:
| {{SimpleNuclide|Magnesium|31}}
| {{SimpleNuclide|Magnesium|31}}
|-
|-
| rowspan=3|{{SimpleNuclide|Sodium|34}}
| rowspan=3|{{anchor|Sodium-34}}{{SimpleNuclide|Sodium|34}}
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 23
| rowspan=3 style="text-align:right" | 23
Line 294: Line 285:
| {{SimpleNuclide|Magnesium|32}}
| {{SimpleNuclide|Magnesium|32}}
| rowspan=3|1+
| rowspan=3|1+
| rowspan=3|
| rowspan=3|
| rowspan=3|
|-
|-
Line 303: Line 293:
| {{SimpleNuclide|Magnesium|33}}
| {{SimpleNuclide|Magnesium|33}}
|-
|-
| rowspan=3|{{SimpleNuclide|Sodium|35}}
| rowspan=3|{{anchor|Sodium-35}}{{SimpleNuclide|Sodium|35}}
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 24
| rowspan=3 style="text-align:right" | 24
Line 311: Line 301:
| {{SimpleNuclide|Magnesium|35}}
| {{SimpleNuclide|Magnesium|35}}
| rowspan=3|3/2+#
| rowspan=3|3/2+#
| rowspan=3|
| rowspan=3|
| rowspan=3|
|-
|-
Line 320: Line 309:
| {{SimpleNuclide|Magnesium|33}} ?
| {{SimpleNuclide|Magnesium|33}} ?
|-
|-
| {{SimpleNuclide|Sodium|36}}
| rowspan=3|{{anchor|Sodium-37}}{{SimpleNuclide|Sodium|37}}
| style="text-align:right" | 11
| style="text-align:right" | 25
| {{val|36.04928|(74)}}#
| < {{val|180|u=ns}}
| n ?<ref group="n" name="decay mode 1" />
| {{SimpleNuclide|Sodium|35}} ?
|
|
|
|-
| rowspan=3|{{SimpleNuclide|Sodium|37}}
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 26
| rowspan=3 style="text-align:right" | 26
| rowspan=3|{{val|37.05704|(74)}}#
| rowspan=3|{{val|37.05704|(74)}}#
| rowspan=3|1#&nbsp;ms [> {{val|1.5|u=µs}}]
| rowspan=3|1#&nbsp;ms [> {{val|1.5|u=μs}}]
| β<sup>−</sup> ?<ref group="n" name="decay mode 1" />
| β<sup>−</sup> ?<ref group="n" name="decay mode 1" />
| {{SimpleNuclide|Magnesium|37}} ?
| {{SimpleNuclide|Magnesium|37}} ?
| rowspan=3|3/2+#
| rowspan=3|3/2+#
| rowspan=3|
| rowspan=3|
| rowspan=3|
|-
|-
Line 348: Line 325:
| {{SimpleNuclide|Magnesium|35}} ?
| {{SimpleNuclide|Magnesium|35}} ?
|-
|-
| {{SimpleNuclide|Sodium|38}}
| rowspan=3|{{anchor|Sodium-39}}{{SimpleNuclide|Sodium|39}}<ref name="RikenNa39" />
| style="text-align:right" | 11
| style="text-align:right" | 27
| {{val|38.06646|(77)}}#
| < {{val|400|u=ns}}
| n ?<ref group="n" name="decay mode 1" />
| {{SimpleNuclide|Sodium|37}} ?
|
|
|
|-
| rowspan=3|{{SimpleNuclide|Sodium|39}}<ref name="Riken51" />
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 11
| rowspan=3 style="text-align:right" | 28
| rowspan=3 style="text-align:right" | 28
Line 367: Line 333:
| {{SimpleNuclide|Magnesium|39}} ?
| {{SimpleNuclide|Magnesium|39}} ?
| rowspan=3|3/2+#
| rowspan=3|3/2+#
| rowspan=3|
| rowspan=3|
| rowspan=3|
|-
|-
Line 379: Line 344:


==Sodium-22==
==Sodium-22==
[[File:Sodium-22,_1-microcurie_disk.jpg|thumb|right|upright=1|Disk containing 1&nbsp;μCi of sodium-22]]
Sodium-22 is a [[radioactive]] isotope of sodium, undergoing [[positron emission]] to {{chem|link=Isotopes of neon|22|Ne}} with a half-life of {{val|2.6019|(6)|u=years}}. {{chem|22|Na}} is being investigated as an efficient generator of "cold [[positrons]]" ([[antimatter]]) to produce [[muons]] for catalyzing [[Muon-catalyzed fusion|fusion of deuterium]]. It is also commonly used as a positron source in [[positron annihilation spectroscopy]].<ref>{{Cite journal|last=Saro|first=Matúš|last2=Kršjak|first2=Vladimír|last3=Petriska|first3=Martin|last4=Slugeň|first4=Vladimír|date=2019-07-29|title=Sodium-22 source contribution determination in positron annihilation measurements using GEANT4|url=https://aip.scitation.org/doi/abs/10.1063/1.5119492|journal=AIP Conference Proceedings|volume=2131|issue=1|pages=020039|doi=10.1063/1.5119492|issn=0094-243X}}</ref>
Sodium-22 is a [[radioactive]] isotope of sodium, undergoing [[positron emission]] to {{chem|link=Isotopes of neon|22|Ne}} with a half-life of {{val|2.6019|(6)|u=years}}. {{chem|22|Na}} is being investigated as an efficient generator of "cold [[positron]]s" ([[antimatter]]) to produce [[muon]]s for [[Muon-catalyzed fusion|catalyzing fusion of deuterium]].{{Citation needed|date=February 2023}} It is also commonly used as a positron source in [[positron annihilation spectroscopy]].<ref>{{Cite journal|last1=Saro|first1=Matúš|last2=Kršjak|first2=Vladimír|last3=Petriska|first3=Martin|last4=Slugeň|first4=Vladimír|date=2019-07-29|title=Sodium-22 source contribution determination in positron annihilation measurements using GEANT4|url=https://aip.scitation.org/doi/abs/10.1063/1.5119492|journal=AIP Conference Proceedings|volume=2131|issue=1|pages=020039|doi=10.1063/1.5119492|bibcode=2019AIPC.2131b0039S |s2cid=201349680 |issn=0094-243X}}</ref>

==Sodium-23==
Sodium-23 is an isotope of sodium with an atomic mass of 22.98976928. It is the only [[stable isotope]] of sodium and also the only [[primordial isotope|primordial]] isotope. Because of its abundance, sodium-23 is used in [[nuclear magnetic resonance]] in various research fields, including materials science and battery research.<ref>{{cite journal| last = Gotoh| first = Kazuma |title = 23Na Solid-State NMR Analyses for Na-Ion Batteries and Materials| date = 8 February 2021 | url = https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202000295 | journal = Batteries & Supercaps
| volume = 4 |issue =8 | pages = 1267–127| doi = 10.1002/batt.202000295 | s2cid = 233827472 }}</ref> Sodium-23 relaxation has applications in studying cation-biomolecule interactions, intracellular and extracellular sodium, ion transport in batteries, and quantum information processing.<ref>{{Cite journal| last1 = Song| first1 = Yifan| last2 = Yin | first2 = Yu| last3 = Chen| first3 = Qinlong| last4 = Marchetti| first4 = Alessandro | last5 = Kong| first5 = Xueqian| title = 23Na relaxometry: An overview of theory and applications| journal = Magnetic Resonance Letters| year = 2023 | volume =3| issue =2 |pages =150–174 | doi = 10.1016/j.mrl.2023.04.001| doi-access = free}}</ref>


==Sodium-24==
==Sodium-24==
Sodium-24 is radioactive<ref><ref>Isotopes of sodium</ref></ref> and can be created from common sodium-23 by [[neutron activation]]. With a half-life of {{val|14.9560|(15)|u=hours}}, {{chem|24|Na}} decays to {{chem|link=Isotopes of magnesium|24|Mg}} by emission of an [[electron]] and two [[gamma ray]]s.<ref>{{cite web|url=https://www.britannica.com/science/sodium-24|title=sodium-24|publisher=[[Encyclopædia Britannica]]}}</ref><ref name="neutron-dose-assessment"/>
Sodium-24 is radioactive and can be created from common sodium-23 by [[neutron activation]]. With a half-life of {{val|14.9560|(15)|u=hours}}, {{chem|24|Na}} decays to {{chem|link=Isotopes of magnesium|24|Mg}} by emission of an [[electron]] and two [[gamma ray]]s.<ref>{{cite web|url=https://www.britannica.com/science/sodium-24|title=sodium-24|publisher=[[Encyclopædia Britannica]]}}</ref><ref name="neutron-dose-assessment"/>


Exposure of the human body to intense [[neutron radiation]] creates {{chem|24|Na}} in the [[blood plasma]]. Measurements of its quantity can be done to determine the absorbed radiation dose of a patient.<ref name="neutron-dose-assessment">{{cite journal|title=Neutron dose assessment using samples of human blood and hair |first1=Daniela |last1=Ekendahl |first2=Peter |last2=Rubovič |first3=Pavel |last3=Žlebčík |first4=Ivan |last4=Hupka |first5=Ondřej |last5=Huml |first6=Věra |last6=Bečková |first7=Helena |last7=Malá |date=7 November 2019 |doi=10.1093/rpd/ncz202|journal=Radiation Protection Dosimetry|volume=186|issue=2–3|pages=202–205}}</ref> This can be used to determine the type of medical treatment required.
Exposure of the human body to intense [[neutron radiation]] creates {{chem|24|Na}} in the [[blood plasma]]. Measurements of its quantity can be done to determine the absorbed radiation dose of a patient.<ref name="neutron-dose-assessment">{{cite journal|title=Neutron dose assessment using samples of human blood and hair |first1=Daniela |last1=Ekendahl |first2=Peter |last2=Rubovič |first3=Pavel |last3=Žlebčík |first4=Ivan |last4=Hupka |first5=Ondřej |last5=Huml |first6=Věra |last6=Bečková |first7=Helena |last7=Malá |date=7 November 2019 |doi=10.1093/rpd/ncz202|journal=Radiation Protection Dosimetry|volume=186|issue=2–3|pages=202–205|pmid=31702764 }}</ref> This can be used to determine the type of medical treatment required.


When sodium is used as coolant in [[fast breeder reactor]]s, {{chem|24|Na}} is created, which makes the coolant radioactive. When the {{chem|24|Na}} decays, it causes a buildup of magnesium in the coolant. Since the half life is short, the {{chem|24|Na}} portion of the coolant ceases to be radioactive within a few days after removal from the reactor. Leakage of the hot sodium from the primary loop may cause radioactive fires,<ref>[https://www-pub.iaea.org/MTCD/Publications/PDF/te_1180_prn.pdf Unusual occurrences during LMFR operation], Proceedings of a Technical Committee meeting held in Vienna, 9–13 November 1998, [[International Atomic Energy Agency|IAEA]]. Pages 84, 122.</ref> as it can ignite in contact with air (and explodes in contact with water). For this reason the primary cooling loop is within a containment vessel.
When sodium is used as coolant in [[fast breeder reactor]]s, {{chem|24|Na}} is created, which makes the coolant radioactive. When the {{chem|24|Na}} decays, it causes a buildup of magnesium in the coolant. Since the half-life is short, the {{chem|24|Na}} portion of the coolant ceases to be radioactive within a few days after removal from the reactor. Leakage of the hot sodium from the primary loop may cause radioactive fires,<ref>[https://www-pub.iaea.org/MTCD/Publications/PDF/te_1180_prn.pdf Unusual occurrences during LMFR operation], Proceedings of a Technical Committee meeting held in Vienna, 9–13 November 1998, [[International Atomic Energy Agency|IAEA]]. Pages 84, 122.</ref> as it can ignite in contact with air (and explodes in contact with water). For this reason the primary cooling loop is within a containment vessel.


Sodium has been proposed as a casing for a [[salted bomb]], as it would convert to {{chem|24|Na}} and produce intense gamma-ray emissions for a few days.<ref>{{cite news|work = [[Time (magazine)|Time]]|url = http://content.time.com/time/magazine/article/0,9171,828877,00.html|title = Science: fy for Doomsday|date = November 24, 1961|archive-url = https://web.archive.org/web/20160314102436/http://content.time.com/time/magazine/article/0,9171,828877,00.html|url-status = live|url-access = subscription|archive-date = March 14, 2016}}</ref><ref>{{cite journal | first=W. H. | last=Clark | title=Chemical and Thermonuclear Explosives | journal=[[Bulletin of the Atomic Scientists]] | year=1961 | volume=17 | issue=9 | pages=356–360 | doi=10.1080/00963402.1961.11454268}}</ref>
Sodium has been proposed as a casing for a [[salted bomb]], as it would convert to {{chem|24|Na}} and produce intense gamma-ray emissions for a few days.<ref>{{cite magazine|magazine = [[Time (magazine)|Time]]|url = http://content.time.com/time/magazine/article/0,9171,828877,00.html|title = Science: fy for Doomsday|date = November 24, 1961|archive-url = https://web.archive.org/web/20160314102436/http://content.time.com/time/magazine/article/0,9171,828877,00.html|url-status = live|url-access = subscription|archive-date = March 14, 2016}}</ref><ref>{{cite journal | first=W. H. | last=Clark | title=Chemical and Thermonuclear Explosives | journal=[[Bulletin of the Atomic Scientists]] | year=1961 | volume=17 | issue=9 | pages=356–360 | doi=10.1080/00963402.1961.11454268| bibcode=1961BuAtS..17i.356C }}</ref>


==Notes==
==Notes==

Latest revision as of 14:56, 6 November 2024

Isotopes of sodium (11Na)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
22Na trace 2.6019 y β+ 22Ne
23Na 100% stable
24Na trace 14.9560 h β 24Mg
Standard atomic weight Ar°(Na)

There are 20 isotopes of sodium (11Na), ranging from 17
Na
to 39
Na
(except for the still-unknown 36Na and 38Na),[4] and five isomers (two for 22
Na
, and one each for 24
Na
, 26
Na
, and 32
Na
). 23
Na
is the only stable (and the only primordial) isotope. It is considered a monoisotopic element and it has a standard atomic weight of 22.98976928(2). Sodium has two radioactive cosmogenic isotopes (22
Na
, with a half-life of 2.6019(6) years;[nb 1] and 24
Na
, with a half-life of 14.9560(15) h). With the exception of those two isotopes, all other isotopes have half-lives under a minute, most under a second. The shortest-lived is the unbound 18
Na
, with a half-life of 1.3(4)×10−21 seconds (although the half-life of the similarly unbound 17Na is not measured).

Acute neutron radiation exposure (e.g., from a nuclear criticality accident) converts some of the stable 23
Na
(in the form of Na+ ion) in human blood plasma to 24
Na
. By measuring the concentration of this isotope, the neutron radiation dosage to the victim can be computed.

22
Na
is a positron-emitting isotope with a remarkably long half-life. It is used to create test-objects and point-sources for positron emission tomography.

List of isotopes

[edit]


Nuclide
[n 1]
Z N Isotopic mass (Da)[5]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Isotopic
abundance
Excitation energy
17
Na
11 6 17.037270(60) p 16
Ne
(1/2+)
18
Na
11 7 18.02688(10) 1.3(4) zs p=?[n 8] 17
Ne
1−#
19
Na
11 8 19.013880(11) > 1 as p 18
Ne
(5/2+)
20
Na
11 9 20.0073543(12) 447.9(2.3) ms β+ (75.0(4)%) 20
Ne
2+
β+α (25.0(4)%) 16
O
21
Na
11 10 20.99765446(5) 22.4550(54) s β+ 21
Ne
3/2+
22
Na
11 11 21.99443742(18) 2.6019(6) y[nb 1] β+ (90.57(8)%) 22
Ne
3+ Trace[n 9]
ε (9.43(6)%) 22
Ne
22m1
Na
583.05(10) keV 243(2) ns IT 22
Na
1+
22m2
Na
657.00(14) keV 19.6(7) ps IT 22
Na
0+
23
Na
11 12 22.9897692820(19) Stable 3/2+ 1
24
Na
11 13 23.990963012(18) 14.9560(15) h β 24
Mg
4+ Trace[n 9]
24m
Na
472.2074(8) keV 20.18(10) ms IT (99.95%) 24
Na
1+
β (0.05%) 24
Mg
25
Na
11 14 24.9899540(13) 59.1(6) s β 25
Mg
5/2+
26
Na
11 15 25.992635(4) 1.07128(25) s β 26
Mg
3+
26m
Na
82.4(4) keV 4.35(16) μs IT 26
Na
1+
27
Na
11 16 26.994076(4) 301(6) ms β (99.902(24)%) 27
Mg
5/2+
βn (0.098(24)%) 26
Mg
28
Na
11 17 27.998939(11) 33.1(1.3) ms β (99.42(12)%) 28
Mg
1+
βn (0.58(12)%) 27
Mg
29
Na
11 18 29.002877(8) 43.2(4) ms β (78%) 29
Mg
3/2+
βn (22(3)%) 28
Mg
β2n ?[n 10] 27
Mg
 ?
30
Na
11 19 30.009098(5) 45.9(7) ms β (70.2(2.2)%) 30
Mg
2+
βn (28.6(2.2)%) 29
Mg
β2n (1.24(19)%) 28
Mg
βα (5.5(2)%×10−5) 26
Ne
31
Na
11 20 31.013147(15) 16.8(3) ms β (> 63.2(3.5)%) 31
Mg
3/2+
βn (36.0(3.5)%) 30
Mg
β2n (0.73(9)%) 29
Mg
β3n (< 0.05%) 28
Mg
32
Na
11 21 32.020010(40) 12.9(3) ms β (66.4(6.2)%) 32
Mg
(3−)
βn (26(6)%) 31
Mg
β2n (7.6(1.5)%) 30
Mg
32m
Na
[6]
625 keV 24(2) μs IT 32
Na
(0+,6−)
33
Na
11 22 33.02553(48) 8.2(4) ms βn (47(6)%) 32
Mg
(3/2+)
β (40.0(6.7)%) 33
Mg
β2n (13(3)%) 31
Mg
34
Na
11 23 34.03401(64) 5.5(1.0) ms β2n (~50%) 32
Mg
1+
β (~35%) 34
Mg
βn (~15%) 33
Mg
35
Na
11 24 35.04061(72)# 1.5(5) ms β 35
Mg
3/2+#
βn ?[n 10] 34
Mg
 ?
β2n ?[n 10] 33
Mg
 ?
37
Na
11 26 37.05704(74)# 1# ms [> 1.5 μs] β ?[n 10] 37
Mg
 ?
3/2+#
βn ?[n 10] 36
Mg
 ?
β2n ?[n 10] 35
Mg
 ?
39
Na
[4]
11 28 39.07512(80)# 1# ms [> 400 ns] β ?[n 10] 39
Mg
 ?
3/2+#
βn ?[n 10] 38
Mg
 ?
β2n ?[n 10] 37
Mg
 ?
This table header & footer:
  1. ^ mNa – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Decay mode shown has been observed, but its intensity is not known experimentally.
  9. ^ a b Cosmogenic nuclide
  10. ^ a b c d e f g h i Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

Sodium-22

[edit]
Disk containing 1 μCi of sodium-22

Sodium-22 is a radioactive isotope of sodium, undergoing positron emission to 22
Ne
with a half-life of 2.6019(6) years. 22
Na
is being investigated as an efficient generator of "cold positrons" (antimatter) to produce muons for catalyzing fusion of deuterium.[citation needed] It is also commonly used as a positron source in positron annihilation spectroscopy.[7]

Sodium-23

[edit]

Sodium-23 is an isotope of sodium with an atomic mass of 22.98976928. It is the only stable isotope of sodium and also the only primordial isotope. Because of its abundance, sodium-23 is used in nuclear magnetic resonance in various research fields, including materials science and battery research.[8] Sodium-23 relaxation has applications in studying cation-biomolecule interactions, intracellular and extracellular sodium, ion transport in batteries, and quantum information processing.[9]

Sodium-24

[edit]

Sodium-24 is radioactive and can be created from common sodium-23 by neutron activation. With a half-life of 14.9560(15) h, 24
Na
decays to 24
Mg
by emission of an electron and two gamma rays.[10][11]

Exposure of the human body to intense neutron radiation creates 24
Na
in the blood plasma. Measurements of its quantity can be done to determine the absorbed radiation dose of a patient.[11] This can be used to determine the type of medical treatment required.

When sodium is used as coolant in fast breeder reactors, 24
Na
is created, which makes the coolant radioactive. When the 24
Na
decays, it causes a buildup of magnesium in the coolant. Since the half-life is short, the 24
Na
portion of the coolant ceases to be radioactive within a few days after removal from the reactor. Leakage of the hot sodium from the primary loop may cause radioactive fires,[12] as it can ignite in contact with air (and explodes in contact with water). For this reason the primary cooling loop is within a containment vessel.

Sodium has been proposed as a casing for a salted bomb, as it would convert to 24
Na
and produce intense gamma-ray emissions for a few days.[13][14]

Notes

[edit]
  1. ^ a b Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: 1 y = 365.2422 d = 31 556 926 s

References

[edit]
  1. ^ a b c d Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Sodium". CIAAW. 2005.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ a b Ahn, D.S.; et al. (2022-11-14). "Discovery of 39Na". Physical Review Letters. 129 (21) 212502: 212502. Bibcode:2022PhRvL.129u2502A. doi:10.1103/PhysRevLett.129.212502. PMID 36461972. S2CID 253591660.
  5. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. ^ Gray, T. J.; Allmond, J. M.; Xu, Z.; King, T. T.; Lubna, R. S.; Crawford, H. L.; Tripathi, V.; Crider, B. P.; Grzywacz, R.; Liddick, S. N.; Macchiavelli, A. O.; Miyagi, T.; Poves, A.; Andalib, A.; Argo, E.; Benetti, C.; Bhattacharya, S.; Campbell, C. M.; Carpenter, M. P.; Chan, J.; Chester, A.; Christie, J.; Clark, B. R.; Cox, I.; Doetsch, A. A.; Dopfer, J.; Duarte, J. G.; Fallon, P.; Frotscher, A.; Gaballah, T.; Harke, J. T.; Heideman, J.; Huegen, H.; Holt, J. D.; Jain, R.; Kitamura, N.; Kolos, K.; Kondev, F. G.; Laminack, A.; Longfellow, B.; Luitel, S.; Madurga, M.; Mahajan, R.; Mogannam, M. J.; Morse, C.; Neupane, S.; Nowicki, A.; Ogunbeku, T. H.; Ong, W.-J.; Porzio, C.; Prokop, C. J.; Rasco, B. C.; Ronning, E. K.; Rubino, E.; Ruland, T. J.; Rykaczewski, K. P.; Schaedig, L.; Seweryniak, D.; Siegl, K.; Singh, M.; Stuchbery, A. E.; Tabor, S. L.; Tang, T. L.; Wheeler, T.; Winger, J. A.; Wood, J. L. (13 June 2023). "Microsecond Isomer at the N = 20 Island of Shape Inversion Observed at FRIB". Physical Review Letters. 130 (24). arXiv:2302.11607. doi:10.1103/PhysRevLett.130.242501.
  7. ^ Saro, Matúš; Kršjak, Vladimír; Petriska, Martin; Slugeň, Vladimír (2019-07-29). "Sodium-22 source contribution determination in positron annihilation measurements using GEANT4". AIP Conference Proceedings. 2131 (1): 020039. Bibcode:2019AIPC.2131b0039S. doi:10.1063/1.5119492. ISSN 0094-243X. S2CID 201349680.
  8. ^ Gotoh, Kazuma (8 February 2021). "23Na Solid-State NMR Analyses for Na-Ion Batteries and Materials". Batteries & Supercaps. 4 (8): 1267–127. doi:10.1002/batt.202000295. S2CID 233827472.
  9. ^ Song, Yifan; Yin, Yu; Chen, Qinlong; Marchetti, Alessandro; Kong, Xueqian (2023). "23Na relaxometry: An overview of theory and applications". Magnetic Resonance Letters. 3 (2): 150–174. doi:10.1016/j.mrl.2023.04.001.
  10. ^ "sodium-24". Encyclopædia Britannica.
  11. ^ a b Ekendahl, Daniela; Rubovič, Peter; Žlebčík, Pavel; Hupka, Ivan; Huml, Ondřej; Bečková, Věra; Malá, Helena (7 November 2019). "Neutron dose assessment using samples of human blood and hair". Radiation Protection Dosimetry. 186 (2–3): 202–205. doi:10.1093/rpd/ncz202. PMID 31702764.
  12. ^ Unusual occurrences during LMFR operation, Proceedings of a Technical Committee meeting held in Vienna, 9–13 November 1998, IAEA. Pages 84, 122.
  13. ^ "Science: fy for Doomsday". Time. November 24, 1961. Archived from the original on March 14, 2016.
  14. ^ Clark, W. H. (1961). "Chemical and Thermonuclear Explosives". Bulletin of the Atomic Scientists. 17 (9): 356–360. Bibcode:1961BuAtS..17i.356C. doi:10.1080/00963402.1961.11454268.
[edit]