Jump to content

Block matrix: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
correction of row/column indices in matrix elements
Undid revision 1239401749 by 2601:249:8700:A590:8585:319D:8B6B:2D1B (talk). The original edit seemed to misunderstand the identity. The formula gives the inverse of [[1, 2], [2, 1]] as [[1, -2], [-2, 1]]/-3, which is correct.
 
(86 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{Short description|Matrix defined using smaller matrices called blocks}}
{{Short description|Matrix defined using smaller matrices called blocks}}
In [[mathematics]], a '''block matrix''' or a '''partitioned matrix''' is a [[matrix (mathematics)|matrix]] that is interpreted as having been broken into sections called '''blocks''' or '''submatrices'''.<ref>{{cite book |last=Eves |first=Howard |author-link=Howard Eves |title=Elementary Matrix Theory |year=1980 |publisher=Dover |location=New York |isbn=0-486-63946-0 |page=[https://archive.org/details/elementarymatrix0000eves_r2m2/page/37 37] |url=https://archive.org/details/elementarymatrix0000eves_r2m2 |url-access=registration |edition=reprint |access-date=24 April 2013 |quote=We shall find that it is sometimes convenient to subdivide a matrix into rectangular blocks of elements. This leads us to consider so-called ''partitioned'', or ''block'', ''matrices''.}}</ref><ref name=":8">{{Cite web |last=Dobrushkin |first=Vladimir |date= |title=Partition Matrices |url=https://www.cfm.brown.edu/people/dobrush/cs52/Mathematica/Part2/partition.html |access-date=2024-03-24 |website=Linear Algebra with Mathematica}}</ref>
{{More citations needed|date=December 2009}}
In [[mathematics]], a '''block matrix''' or a '''partitioned matrix''' is a [[matrix (mathematics)|matrix]] that is ''interpreted'' as having been broken into sections called '''blocks''' or '''submatrices'''.<ref>{{cite book |last=Eves |first=Howard |author-link=Howard Eves |title=Elementary Matrix Theory |year=1980 |publisher=Dover |location=New York |isbn=0-486-63946-0 |page=[https://archive.org/details/elementarymatrix0000eves_r2m2/page/37 37] |url=https://archive.org/details/elementarymatrix0000eves_r2m2 |url-access=registration |edition=reprint |access-date=24 April 2013 |quote=We shall find that it is sometimes convenient to subdivide a matrix into rectangular blocks of elements. This leads us to consider so-called ''partitioned'', or ''block'', ''matrices''.}}</ref> Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or [[Partition of a set|partition]] it, into a collection of smaller matrices.<ref>{{cite book |last=Anton |first=Howard |title=Elementary Linear Algebra |year=1994 |publisher=John Wiley |location=New York |isbn=0-471-58742-7 |page=30 |edition=7th |quote=A matrix can be subdivided or '''''partitioned''''' into smaller matrices by inserting horizontal and vertical rules between selected rows and columns.}}</ref> Any matrix may be interpreted as a block matrix in one or more ways, with each interpretation defined by how its rows and columns are partitioned.


Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or [[Partition of a set|partition]] it, into a collection of smaller matrices.<ref>{{cite book |last=Anton |first=Howard |title=Elementary Linear Algebra |year=1994 |publisher=John Wiley |location=New York |isbn=0-471-58742-7 |page=30 |edition=7th |quote=A matrix can be subdivided or '''''partitioned''''' into smaller matrices by inserting horizontal and vertical rules between selected rows and columns.}}</ref><ref name=":8" /> For example, the 3x4 matrix presented below is divided by horizontal and vertical lines into four blocks: the top-left 2x3 block, the top-right 2x1 block, the bottom-left 1x3 block, and the bottom-right 1x1 block.
This notion can be made more precise for an <math>n</math> by <math>m</math> matrix <math>M</math> by partitioning <math>n</math> into a collection <math>\text{rowgroups}</math>, and then partitioning <math>m</math> into a collection <math>\text{colgroups}</math>. The original matrix is then considered as the "total" of these groups, in the sense that the <math>(i, j)</math> entry of the original matrix corresponds in a [[Bijection|1-to-1]] way with some <math>(s, t)</math> [[offset (computer science)|offset]] entry of some <math>(x,y)</math>, where <math>x \in \text{rowgroups}</math> and <math>y \in \text{colgroups}</math>.


:<math>
Block matrix algebra arises in general from [[biproduct]]s in [[Category (mathematics)|categories]] of matrices.<ref>{{cite journal | last1 = Macedo | first1 = H.D. | last2 = Oliveira | first2 = J.N. | year = 2013 | title = Typing linear algebra: A biproduct-oriented approach | doi = 10.1016/j.scico.2012.07.012 | journal = Science of Computer Programming | volume = 78 | issue = 11| pages = 2160–2191 | arxiv = 1312.4818 }}</ref>
\left[
\begin{array}{ccc|c}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
\hline
c_{1} & c_{2} & c_{3} & d
\end{array}
\right]
</math>


Any matrix may be interpreted as a block matrix in one or more ways, with each interpretation defined by how its rows and columns are partitioned.
==Example==

This notion can be made more precise for an <math>n</math> by <math>m</math> matrix <math>M</math> by partitioning <math>n</math> into a collection <math>\text{rowgroups}</math>, and then partitioning <math>m</math> into a collection <math>\text{colgroups}</math>. The original matrix is then considered as the "total" of these groups, in the sense that the <math>(i, j)</math> entry of the original matrix corresponds in a [[Bijection|1-to-1]] way with some <math>(s, t)</math> [[offset (computer science)|offset]] entry of some <math>(x,y)</math>, where <math>x \in \text{rowgroups}</math> and <math>y \in \text{colgroups}</math>.<ref>{{Cite journal |last1=Indhumathi |first1=D. |last2=Sarala |first2=S. |date=2014-05-16 |title=Fragment Analysis and Test Case Generation using F-Measure for Adaptive Random Testing and Partitioned Block based Adaptive Random Testing |url=http://research.ijcaonline.org/volume93/number6/pxc3895662.pdf |journal=International Journal of Computer Applications |volume=93 |issue=6 |pages=13 |doi=10.5120/16218-5662}}</ref>

Block matrix algebra arises in general from [[biproduct]]s in [[Category (mathematics)|categories]] of matrices.<ref>{{cite journal | last1 = Macedo | first1 = H.D. | last2 = Oliveira | first2 = J.N. | year = 2013 | title = Typing linear algebra: A biproduct-oriented approach | doi = 10.1016/j.scico.2012.07.012 | journal = Science of Computer Programming | volume = 78 | issue = 11| pages = 2160–2191 | arxiv = 1312.4818 }}</ref>
[[File:BlockMatrix168square.png|thumb|A 168×168 element block matrix with 12×12, 12×24, 24×12, and 24×24 sub-matrices. Non-zero elements are in blue, zero elements are grayed.]]
[[File:BlockMatrix168square.png|thumb|A 168×168 element block matrix with 12×12, 12×24, 24×12, and 24×24 sub-matrices. Non-zero elements are in blue, zero elements are grayed.]]


==Example==
The matrix
The matrix


Line 19: Line 32:
\end{bmatrix}</math>
\end{bmatrix}</math>


can be partitioned into four 2×2 blocks
can be visualized as divided into four blocks, as

:<math>\mathbf{P} = \left[
\begin{array}{cc|cc}
1 & 2 & 2 & 7 \\
1 & 5 & 6 & 2 \\
\hline
3 & 3 & 4 & 5 \\
3 & 3 & 6 & 7
\end{array}
\right]</math>.

The horizontal and vertical lines have no special mathematical meaning,<ref name=":3" /><ref name=":4">{{Cite book |last=Johnston |first=Nathaniel |title=Advanced linear and matrix algebra |date=2021 |publisher=Springer Nature |isbn=978-3-030-52814-0 |location=Cham, Switzerland |pages=298}}</ref> but are a common way to visualize a partition.<ref name=":3" /><ref name=":4" /> By this partition, <math>P</math> is partitioned into four 2×2 blocks, as


:<math>
:<math>
Line 45: Line 70:
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{bmatrix}.</math><ref>{{Cite book |last=Jeffrey |first=Alan |url=https://www.worldcat.org/title/639165077 |title=Matrix operations for engineers and scientists: an essential guide in linear algebra |date=2010 |publisher=Springer |isbn=978-90-481-9273-1 |location=Dordrecht [Netherlands] ; New York |pages=54 |oclc=639165077}}</ref>
\end{bmatrix}.</math>


==Formal definition==
==Block matrix multiplication==
Let <math>A \in \mathbb{C}^{m \times n}</math>. A '''partitioning''' of <math>A</math> is a representation of <math>A</math> in the form
It is possible to use a block partitioned matrix product that involves only algebra on submatrices of the factors. The partitioning of the factors is not arbitrary, however, and requires "[[Conformable matrix|conformable]] partitions"<ref>{{cite book |last=Eves |first=Howard |author-link=Howard Eves |title=Elementary Matrix Theory |year=1980 |publisher=Dover |location=New York |isbn=0-486-63946-0 |page=[https://archive.org/details/elementarymatrix0000eves_r2m2/page/37 37] |url=https://archive.org/details/elementarymatrix0000eves_r2m2 |url-access=registration |edition=reprint |access-date=24 April 2013 |quote=A partitioning as in Theorem 1.9.4 is called a ''conformable partition'' of ''A'' and ''B''.}}</ref> between two matrices <math>A</math> and <math>B</math> such that all submatrix products that will be used are defined.<ref>{{cite book |last=Anton |first=Howard |title=Elementary Linear Algebra |year=1994 |publisher=John Wiley |location=New York |isbn=0-471-58742-7 |page=36 |edition=7th |quote=...provided the sizes of the submatrices of A and B are such that the indicated operations can be performed.}}</ref> Given an <math>(m \times p)</math> matrix <math>\mathbf{A}</math> with <math>m</math> row partitions and <math>p</math> column partitions


:<math>\mathbf{A} = \begin{bmatrix}
:<math>A = \begin{bmatrix}
\mathbf{A}_{11} & \mathbf{A}_{12} & \cdots & \mathbf{A}_{1p} \\
A_{11} & A_{12} & \cdots & A_{1q} \\
\mathbf{A}_{21} & \mathbf{A}_{22} & \cdots & \mathbf{A}_{2p} \\
A_{21} & A_{22} & \cdots & A_{2q} \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{A}_{m1} & \mathbf{A}_{m2} & \cdots & \mathbf{A}_{mp}
A_{p1} & A_{p2} & \cdots & A_{pq}
\end{bmatrix}</math>,

where <math>A_{ij} \in \mathbb{C}^{m_i \times n_j}</math> are contiguous submatrices, <math>\sum_{i=1}^{p} m_i = m</math>, and <math>\sum_{j=1}^{q} n_j = n</math>.<ref name=":2">{{Cite book |last=Stewart |first=Gilbert W. |title=Matrix algorithms. 1: Basic decompositions |date=1998 |publisher=Soc. for Industrial and Applied Mathematics |isbn=978-0-89871-414-2 |location=Philadelphia, PA |pages=18–20}}</ref> The elements <math>A_{ij}</math> of the partition are called '''blocks'''.<ref name=":2" />

By this definition, the blocks in any one column must all have the same number of columns.<ref name=":2" /> Similarly, the blocks in any one row must have the same number of rows.<ref name=":2" />

=== Partitioning methods ===
A matrix can be partitioned in many ways.<ref name=":2" /> For example, a matrix <math>A</math> is said to be '''partitioned by columns''' if it is written as

:<math>A = (a_1 \ a_2 \ \cdots \ a_n)</math>,

where <math>a_j</math> is the <math>j</math>th column of <math>A</math>.<ref name=":2" /> A matrix can also be '''partitioned by rows''':

:<math>A = \begin{bmatrix}
a_1^T \\
a_2^T \\
\vdots \\
a_m^T
\end{bmatrix}</math>,

where <math>a_i^T</math> is the <math>i</math>th row of <math>A</math>.<ref name=":2" />

=== Common partitions ===
Often,<ref name=":2" /> we encounter the 2x2 partition

:<math>A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}</math>,<ref name=":2" />

particularly in the form where <math>A_{11}</math> is a scalar:

:<math>A = \begin{bmatrix}
a_{11} & a_{12}^T \\
a_{21} & A_{22}
\end{bmatrix}</math>.<ref name=":2" />
==Block matrix operations==

===Transpose===
Let

:<math>A = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1q} \\
A_{21} & A_{22} & \cdots & A_{2q} \\
\vdots & \vdots & \ddots & \vdots \\
A_{p1} & A_{p2} & \cdots & A_{pq}
\end{bmatrix}</math>
\end{bmatrix}</math>


and a <math>(p \times n)</math> matrix <math>\mathbf{B}</math> with <math>p</math> row partitions and <math>n</math> column partitions
where <math>A_{ij} \in \mathbb{C}^{k_i \times \ell_j}</math>. (This matrix <math>A</math> will be reused in {{section link||Addition}} and {{section link||Multiplication}}.) Then its transpose is


:<math>\mathbf{B} = \begin{bmatrix}
:<math>A^T = \begin{bmatrix}
\mathbf{B}_{11} & \mathbf{B}_{12} & \cdots &\mathbf{B}_{1n} \\
A_{11}^T & A_{21}^T & \cdots & A_{p1}^T \\
\mathbf{B}_{21} & \mathbf{B}_{22} & \cdots &\mathbf{B}_{2n} \\
A_{12}^T & A_{22}^T & \cdots & A_{p2}^T \\
\vdots & \vdots & \ddots &\vdots \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{B}_{p1} & \mathbf{B}_{p2} & \cdots &\mathbf{B}_{sn}
A_{1q}^T & A_{2q}^T & \cdots & A_{pq}^T
\end{bmatrix},</math>
\end{bmatrix}</math>,<ref name=":2" /><ref name=":1" />


and the same equation holds with the transpose replaced by the conjugate transpose.<ref name=":2" />
that are compatible with the partitions of <math>A</math>, the matrix product

====Block transpose====
A special form of matrix [[transpose]] can also be defined for block matrices, where individual blocks are reordered but not transposed. Let <math>A=(B_{ij})</math> be a <math>k \times l</math> block matrix with <math>m \times n</math> blocks <math>B_{ij}</math>, the block transpose of <math>A</math> is the <math>l \times k</math> block matrix <math>A^\mathcal{B}</math> with <math>m \times n</math> blocks <math>\left(A^\mathcal{B}\right)_{ij} = B_{ji}</math>.<ref>{{cite thesis |last=Mackey |first=D. Steven |date=2006 |title=Structured linearizations for matrix polynomials |publisher=University of Manchester |issn=1749-9097 |oclc=930686781 |url=http://eprints.maths.manchester.ac.uk/314/1/mackey06.pdf}}</ref> As with the conventional trace operator, the block transpose is a [[linear mapping]] such that <math>(A + C)^\mathcal{B} = A^\mathcal{B} + C^\mathcal{B} </math>.<ref name=":1" /> However, in general the property <math>(A C)^\mathcal{B} = C^\mathcal{B} A^\mathcal{B} </math> does not hold unless the blocks of <math>A</math> and <math>C</math> commute.

===Addition===

Let

:<math>B = \begin{bmatrix}
B_{11} & B_{12} & \cdots & B_{1s} \\
B_{21} & B_{22} & \cdots & B_{2s} \\
\vdots & \vdots & \ddots & \vdots \\
B_{r1} & B_{r2} & \cdots & B_{rs}
\end{bmatrix}</math>,

where <math>B_{ij} \in \mathbb{C}^{m_i \times n_j}</math>, and let <math>A</math> be the matrix defined in {{section link||Transpose}}. (This matrix <math>B</math> will be reused in {{section link||Multiplication}}.) Then if <math>p = r</math>, <math>q = s</math>, <math>k_i = m_i</math>, and <math>\ell_j = n_j</math>, then

:<math>A + B = \begin{bmatrix}
A_{11} + B_{11} & A_{12} + B_{12} & \cdots & A_{1q} + B_{1q} \\
A_{21} + B_{21} & A_{22} + B_{22} & \cdots & A_{2q} + B_{2q} \\
\vdots & \vdots & \ddots & \vdots \\
A_{p1} + B_{p1} & A_{p2} + B_{p2} & \cdots & A_{pq} + B_{pq}
\end{bmatrix}</math>.<ref name=":2" />

===Multiplication===
It is possible to use a block partitioned matrix product that involves only algebra on submatrices of the factors. The partitioning of the factors is not arbitrary, however, and requires "[[Conformable matrix|conformable]] partitions"<ref>{{cite book |last=Eves |first=Howard |author-link=Howard Eves |title=Elementary Matrix Theory |year=1980 |publisher=Dover |location=New York |isbn=0-486-63946-0 |page=[https://archive.org/details/elementarymatrix0000eves_r2m2/page/37 37] |url=https://archive.org/details/elementarymatrix0000eves_r2m2 |url-access=registration |edition=reprint |access-date=24 April 2013 |quote=A partitioning as in Theorem 1.9.4 is called a ''conformable partition'' of ''A'' and ''B''.}}</ref> between two matrices <math>A</math> and <math>B</math> such that all submatrix products that will be used are defined.<ref>{{cite book |last=Anton |first=Howard |title=Elementary Linear Algebra |year=1994 |publisher=John Wiley |location=New York |isbn=0-471-58742-7 |page=36 |edition=7th |quote=...provided the sizes of the submatrices of A and B are such that the indicated operations can be performed.}}</ref>
{{Cquote
| quote = Two matrices <math>A</math> and <math>B</math> are said to be partitioned conformally for the product <math>AB</math>, when <math>A</math> and <math>B</math> are partitioned into submatrices and if the multiplication <math>AB</math> is carried out treating the submatrices as if they are scalars, but keeping the order, and when all products and sums of submatrices involved are defined.
| author = Arak M. Mathai and Hans J. Haubold
| source = ''Linear Algebra: A Course for Physicists and Engineers''<ref>{{Cite book |last1=Mathai |first1=Arakaparampil M. |title=Linear Algebra: a course for physicists and engineers |last2=Haubold |first2=Hans J. |date=2017 |publisher=De Gruyter |isbn=978-3-11-056259-0 |series=De Gruyter textbook |location=Berlin Boston |pages=162}}</ref>
}}

Let <math>A</math> be the matrix defined in {{section link||Transpose}}, and let <math>B</math> be the matrix defined in {{section link||Addition}}. Then the matrix product


:<math>
:<math>
C = AB
\mathbf{C}=\mathbf{A}\mathbf{B}
</math>
</math>


can be performed blockwise, yielding <math>\mathbf{C}</math> as an <math>(m \times n)</math> matrix with <math>m</math> row partitions and <math>n</math> column partitions. The matrices in the resulting matrix <math>\mathbf{C}</math> are calculated by multiplying:
can be performed blockwise, yielding <math>C</math> as an <math>(p \times s)</math> matrix. The matrices in the resulting matrix <math>C</math> are calculated by multiplying:


:<math>
:<math>
\mathbf{C}_{q r} = \sum^p_{i=1}\mathbf{A}_{q i}\mathbf{B}_{i r}.
C_{ij} = \sum_{k=1}^{q} A_{ik}B_{kj}.
</math><ref name=":3">{{Cite book |last=Johnston |first=Nathaniel |title=Introduction to linear and matrix algebra |date=2021 |publisher=Springer Nature |isbn=978-3-030-52811-9 |location=Cham, Switzerland |pages=30,425}}</ref>
</math>


Or, using the [[Einstein notation]] that implicitly sums over repeated indices:
Or, using the [[Einstein notation]] that implicitly sums over repeated indices:


:<math>
:<math>
\mathbf{C}_{q r} = \mathbf{A}_{q i}\mathbf{B}_{i r}.
C_{ij} = A_{ik}B_{kj}.
</math>
</math>


Depicting <math>C</math> as a matrix, we have
==Block matrix inversion{{anchor|Inversion}}==

:<math>C = AB = \begin{bmatrix}
\sum_{i=1}^{q} A_{1i}B_{i1} & \sum_{i=1}^{q} A_{1i}B_{i2} & \cdots & \sum_{i=1}^{q} A_{1i}B_{is} \\
\sum_{i=1}^{q} A_{2i}B_{i1} & \sum_{i=1}^{q} A_{2i}B_{i2} & \cdots & \sum_{i=1}^{q} A_{2i}B_{is} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i=1}^{q} A_{pi}B_{i1} & \sum_{i=1}^{q} A_{pi}B_{i2} & \cdots & \sum_{i=1}^{q} A_{pi}B_{is}
\end{bmatrix}</math>.<ref name=":2" />

===Inversion{{anchor|Inversion}}===
{{for|more details and derivation using block LDU decomposition|Schur complement}}
{{for|more details and derivation using block LDU decomposition|Schur complement}}
{{see also|Helmert–Wolf blocking}}
{{see also|Helmert–Wolf blocking}}
Line 90: Line 203:
If a matrix is partitioned into four blocks, it can be [[invertible matrix#Blockwise inversion|inverted blockwise]] as follows:
If a matrix is partitioned into four blocks, it can be [[invertible matrix#Blockwise inversion|inverted blockwise]] as follows:


:<math>\mathbf{P} = \begin{bmatrix}
:<math>{P} = \begin{bmatrix}
\mathbf{A} & \mathbf{B} \\
{A} & {B} \\
\mathbf{C} & \mathbf{D}
{C} & {D}
\end{bmatrix}^{-1} = \begin{bmatrix}
\end{bmatrix}^{-1} = \begin{bmatrix}
\mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}\left(\mathbf{D} - \mathbf{CA}^{-1}\mathbf{B}\right)^{-1}\mathbf{CA}^{-1} &
{A}^{-1} + {A}^{-1}{B}\left({D} - {CA}^{-1}{B}\right)^{-1}{CA}^{-1} &
-\mathbf{A}^{-1}\mathbf{B}\left(\mathbf{D} - \mathbf{CA}^{-1}\mathbf{B}\right)^{-1} \\
-{A}^{-1}{B}\left({D} - {CA}^{-1}{B}\right)^{-1} \\
-\left(\mathbf{D}-\mathbf{CA}^{-1}\mathbf{B}\right)^{-1}\mathbf{CA}^{-1} &
-\left({D}-{CA}^{-1}{B}\right)^{-1}{CA}^{-1} &
\left(\mathbf{D} - \mathbf{CA}^{-1}\mathbf{B}\right)^{-1}
\left({D} - {CA}^{-1}{B}\right)^{-1}
\end{bmatrix},
\end{bmatrix},
</math>
</math>
Line 114: Line 227:
Equivalently, by permuting the blocks:
Equivalently, by permuting the blocks:


:<math>\mathbf{P} = \begin{bmatrix}
:<math>{P} = \begin{bmatrix}
\mathbf{A} & \mathbf{B} \\
{A} & {B} \\
\mathbf{C} & \mathbf{D}
{C} & {D}
\end{bmatrix}^{-1} = \begin{bmatrix}
\end{bmatrix}^{-1} = \begin{bmatrix}
\left(\mathbf{A} - \mathbf{BD}^{-1}\mathbf{C}\right)^{-1} &
\left({A} - {BD}^{-1}{C}\right)^{-1} &
-\left(\mathbf{A}-\mathbf{BD}^{-1}\mathbf{C}\right)^{-1}\mathbf{BD}^{-1} \\
-\left({A}-{BD}^{-1}{C}\right)^{-1}{BD}^{-1} \\
-\mathbf{D}^{-1}\mathbf{C}\left(\mathbf{A} - \mathbf{BD}^{-1}\mathbf{C}\right)^{-1} &
-{D}^{-1}{C}\left({A} - {BD}^{-1}{C}\right)^{-1} &
\quad \mathbf{D}^{-1} + \mathbf{D}^{-1}\mathbf{C}\left(\mathbf{A} - \mathbf{BD}^{-1}\mathbf{C}\right)^{-1}\mathbf{BD}^{-1}
\quad {D}^{-1} + {D}^{-1}{C}\left({A} - {BD}^{-1}{C}\right)^{-1}{BD}^{-1}
\end{bmatrix}.
\end{bmatrix}.
</math>
</math><ref name=":0" />


Here, '''D''' and the Schur complement of '''D''' in '''P''': {{nowrap|'''P'''/'''D''' {{=}} '''A''' − '''BD'''{{sup|−1}}'''C'''}} must be invertible.
Here, '''D''' and the Schur complement of '''D''' in '''P''': {{nowrap|'''P'''/'''D''' {{=}} '''A''' − '''BD'''{{sup|−1}}'''C'''}} must be invertible.
Line 131: Line 244:
: <math>
: <math>
\begin{bmatrix}
\begin{bmatrix}
\mathbf{A} & \mathbf{B} \\
{A} & {B} \\
\mathbf{C} & \mathbf{D}
{C} & {D}
\end{bmatrix}^{-1} = \begin{bmatrix}
\end{bmatrix}^{-1} = \begin{bmatrix}
\left(\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C}\right)^{-1} & \mathbf{0} \\
\left({A} - {B} {D}^{-1} {C}\right)^{-1} & {0} \\
\mathbf{0} & \left(\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B}\right)^{-1}
{0} & \left({D} - {C} {A}^{-1} {B}\right)^{-1}
\end{bmatrix} \begin{bmatrix}
\end{bmatrix} \begin{bmatrix}
\mathbf{I} & -\mathbf{B} \mathbf{D}^{-1} \\
{I} & -{B} {D}^{-1} \\
-\mathbf{C} \mathbf{A}^{-1} & \mathbf{I}
-{C} {A}^{-1} & {I}
\end{bmatrix}.
\end{bmatrix}.
</math>
</math>
Line 144: Line 257:
By the [[Weinstein–Aronszajn identity]], one of the two matrices in the block-diagonal matrix is invertible exactly when the other is.
By the [[Weinstein–Aronszajn identity]], one of the two matrices in the block-diagonal matrix is invertible exactly when the other is.


==Block matrix determinant{{anchor|Determinant}}==
===Determinant{{anchor|Determinant}}===
The formula for the determinant of a <math>2 \times 2</math>-matrix above continues to hold, under appropriate further assumptions, for a matrix composed of four submatrices <math>A, B, C, D</math>. The easiest such formula, which can be proven using either the Leibniz formula or a factorization involving the [[Schur complement]], is
The formula for the determinant of a <math>2 \times 2</math>-matrix above continues to hold, under appropriate further assumptions, for a matrix composed of four submatrices <math>A, B, C, D</math>. The easiest such formula, which can be proven using either the Leibniz formula or a factorization involving the [[Schur complement]], is
:<math>\det\begin{pmatrix}A& 0\\ C& D\end{pmatrix} = \det(A) \det(D) = \det\begin{pmatrix}A& B\\ 0& D\end{pmatrix}.</math>
:<math>\det\begin{bmatrix}A& 0\\ C& D\end{bmatrix} = \det(A) \det(D) = \det\begin{bmatrix}A& B\\ 0& D\end{bmatrix}.</math><ref name=":0" />


Using this formula, we can derive that [[characteristic polynomial]]s of <math>\begin{pmatrix}A& 0\\ C& D\end{pmatrix}</math> and <math>\begin{pmatrix}A& B\\ 0& D\end{pmatrix}</math> are same and equal to the product of characteristic polynomials of <math>A</math> and <math>D</math>. Furthermore, If <math>\begin{pmatrix}A& 0\\ C& D\end{pmatrix}</math> or <math>\begin{pmatrix}A& B\\ 0& D\end{pmatrix}</math> is [[diagonalizable]], then <math>A</math> and <math>D</math> are diagonalizable too. The converse is false; simply check <math>\begin{pmatrix}1& 1\\ 0& 1\end{pmatrix}</math>.
Using this formula, we can derive that [[characteristic polynomial]]s of <math>\begin{bmatrix}A& 0\\ C& D\end{bmatrix}</math> and <math>\begin{bmatrix}A& B\\ 0& D\end{bmatrix}</math> are same and equal to the product of characteristic polynomials of <math>A</math> and <math>D</math>. Furthermore, If <math>\begin{bmatrix}A& 0\\ C& D\end{bmatrix}</math> or <math>\begin{bmatrix}A& B\\ 0& D\end{bmatrix}</math> is [[diagonalizable]], then <math>A</math> and <math>D</math> are diagonalizable too. The converse is false; simply check <math>\begin{bmatrix}1& 1\\ 0& 1\end{bmatrix}</math>.


If <math>A</math> is [[Invertible matrix|invertible]] (and similarly if <math>D</math> is invertible<ref>Taboga, Marco (2021). "Determinant of a block matrix", Lectures on matrix algebra.</ref>), one has
If <math>A</math> is [[Invertible matrix|invertible]], one has


:<math>\det\begin{pmatrix}A& B\\ C& D\end{pmatrix} = \det(A) \det\left(D - C A^{-1} B\right) .</math>
:<math>\det\begin{bmatrix}A& B\\ C& D\end{bmatrix} = \det(A) \det\left(D - C A^{-1} B\right),</math><ref name=":0" />
and if <math>D</math> is invertible, one has
If <math>D</math> is a <math>1 \times 1</math>-matrix, this simplifies to <math>\det (A) (D - CA^{-1}B)</math>.

:<math>\det\begin{bmatrix}A& B\\ C& D\end{bmatrix} = \det(D) \det\left(A - B D^{-1} C\right) .</math><ref>Taboga, Marco (2021). "Determinant of a block matrix", Lectures on matrix algebra.</ref><ref name=":0" />


If the blocks are square matrices of the ''same'' size further formulas hold. For example, if <math>C</math> and <math>D</math> [[commutativity|commute]] (i.e., <math>CD=DC</math>), then
If the blocks are square matrices of the ''same'' size further formulas hold. For example, if <math>C</math> and <math>D</math> [[commutativity|commute]] (i.e., <math>CD=DC</math>), then
:<math>\det\begin{pmatrix}A& B\\ C& D\end{pmatrix} = \det(AD - BC).</math><ref>{{Cite journal|first= J. R.|last= Silvester|title= Determinants of Block Matrices|journal= Math. Gaz.|volume= 84|issue= 501|year= 2000|pages= 460–467|jstor= 3620776|url= http://www.ee.iisc.ernet.in/new/people/faculty/prasantg/downloads/blocks.pdf|doi= 10.2307/3620776|access-date= 2021-06-25|archive-date= 2015-03-18|archive-url= https://web.archive.org/web/20150318222335/http://www.ee.iisc.ernet.in/new/people/faculty/prasantg/downloads/blocks.pdf|url-status= dead}}</ref>
:<math>\det\begin{bmatrix}A& B\\ C& D\end{bmatrix} = \det(AD - BC).</math><ref>{{Cite journal|first= J. R.|last= Silvester|title= Determinants of Block Matrices|journal= Math. Gaz.|volume= 84|issue= 501|year= 2000|pages= 460–467|jstor= 3620776|url= http://www.ee.iisc.ernet.in/new/people/faculty/prasantg/downloads/blocks.pdf|doi= 10.2307/3620776|access-date= 2021-06-25|archive-date= 2015-03-18|archive-url= https://web.archive.org/web/20150318222335/http://www.ee.iisc.ernet.in/new/people/faculty/prasantg/downloads/blocks.pdf|url-status= dead}}</ref>
This formula has been generalized to matrices composed of more than <math>2 \times 2</math> blocks, again under appropriate commutativity conditions among the individual blocks.<ref>{{cite journal|last1=Sothanaphan|first1=Nat|title=Determinants of block matrices with noncommuting blocks|journal=Linear Algebra and Its Applications|date=January 2017|volume=512|pages=202–218|doi=10.1016/j.laa.2016.10.004|arxiv=1805.06027|s2cid=119272194}}</ref>
This formula has been generalized to matrices composed of more than <math>2 \times 2</math> blocks, again under appropriate commutativity conditions among the individual blocks.<ref>{{cite journal|last1=Sothanaphan|first1=Nat|title=Determinants of block matrices with noncommuting blocks|journal=Linear Algebra and Its Applications|date=January 2017|volume=512|pages=202–218|doi=10.1016/j.laa.2016.10.004|arxiv=1805.06027|s2cid=119272194}}</ref>


For <math>A = D </math> and <math>B=C</math>, the following formula holds (even if <math>A</math> and <math>B</math> do not commute){{citation needed|date=May 2021}}
For <math>A = D </math> and <math>B=C</math>, the following formula holds (even if <math>A</math> and <math>B</math> do not commute)
:<math>\det\begin{pmatrix}A& B\\ B& A\end{pmatrix} = \det(A - B) \det(A + B).</math>
:<math>\det\begin{bmatrix}A& B\\ B& A\end{bmatrix} = \det(A - B) \det(A + B).</math><ref name=":0" />


==Special types of block matrices==
==Block diagonal matrices {{anchor|Block diagonal matrix}} ==
A '''block diagonal matrix''' is a block matrix that is a [[square matrix]] such that the main-diagonal blocks are square matrices and all off-diagonal blocks are zero matrices. That is, a block diagonal matrix '''A''' has the form


===Direct sums and block diagonal matrices===
:<math>\mathbf{A} = \begin{bmatrix}
\mathbf{A}_1 & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_2 & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{A}_n
\end{bmatrix}</math>

where '''A'''<sub>''k''</sub> is a square matrix for all ''k'' = 1, ..., ''n''. In other words, matrix '''A''' is the [[direct sum of matrices|direct sum]] of '''A'''<sub>1</sub>, ..., '''A'''<sub>''n''</sub>. It can also be indicated as '''A'''<sub>1</sub>&nbsp;⊕&nbsp;'''A'''<sub>2</sub>&nbsp;⊕&nbsp;...&nbsp;⊕&nbsp;'''A'''<sub>''n''</sub> or diag('''A'''<sub>1</sub>, '''A'''<sub>2</sub>, ..., '''A'''<sub>''n''</sub>) &nbsp;(the latter being the same formalism used for a [[diagonal matrix]]). Any square matrix can trivially be considered a block diagonal matrix with only one block.

For the [[determinant]] and [[trace (linear algebra)|trace]], the following properties hold
:<math>\begin{align}
\det\mathbf{A} &= \det\mathbf{A}_1 \times \cdots \times \det\mathbf{A}_n, \\
\operatorname{tr}\mathbf{A} &= \operatorname{tr} \mathbf{A}_1 + \cdots + \operatorname{tr} \mathbf{A}_n.\end{align}</math>

A block diagonal matrix is invertible [[if and only if]] each of its main-diagonal blocks are invertible, and in this case its inverse is another block diagonal matrix given by
:<math>\begin{bmatrix}
\mathbf{A}_{1} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{2} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{A}_{n}
\end{bmatrix}^{-1} = \begin{bmatrix}
\mathbf{A}_{1}^{-1} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{2}^{-1} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{A}_{n}^{-1}
\end{bmatrix}.
</math>

The [[eigenvalues and eigenvectors]] of <math>\mathbf{A}</math> are simply those of the <math>\mathbf{A}_k</math>s combined.

==Block tridiagonal matrices==
A '''block tridiagonal matrix''' is another special block matrix, which is just like the block diagonal matrix a [[square matrix]], having square matrices (blocks) in the lower diagonal, [[main diagonal]] and upper diagonal, with all other blocks being zero matrices. It is essentially a [[tridiagonal matrix]] but has submatrices in places of scalars. A block tridiagonal matrix '''A''' has the form

:<math>\mathbf{A} = \begin{bmatrix}
\mathbf{B}_{1} & \mathbf{C}_{1} & & & \cdots & & \mathbf{0} \\
\mathbf{A}_{2} & \mathbf{B}_{2} & \mathbf{C}_{2} & & & & \\
& \ddots & \ddots & \ddots & & & \vdots \\
& & \mathbf{A}_{k} & \mathbf{B}_{k} & \mathbf{C}_{k} & & \\
\vdots & & & \ddots & \ddots & \ddots & \\
& & & & \mathbf{A}_{n-1} & \mathbf{B}_{n-1} & \mathbf{C}_{n-1} \\
\mathbf{0} & & \cdots & & & \mathbf{A}_{n} & \mathbf{B}_{n}
\end{bmatrix}</math>

where '''A'''<sub>''k''</sub>, '''B'''<sub>''k''</sub> and '''C'''<sub>''k''</sub> are square sub-matrices of the lower, main and upper diagonal respectively.


====Direct sum====
Block tridiagonal matrices are often encountered in numerical solutions of engineering problems (e.g., [[computational fluid dynamics]]). Optimized numerical methods for [[LU factorization]] are available and hence efficient solution algorithms for equation systems with a block tridiagonal matrix as coefficient matrix. The [[Thomas algorithm]], used for efficient solution of equation systems involving a [[tridiagonal matrix]] can also be applied using matrix operations to block tridiagonal matrices (see also [[Block LU decomposition]]).

==Block Toeplitz matrices==
A '''block Toeplitz matrix''' is another special block matrix, which contains blocks that are repeated down the diagonals of the matrix, as a [[Toeplitz matrix]] has elements repeated down the diagonal.

A block Toeplitz matrix '''A''' has the form

:<math>\mathbf{A} = \begin{bmatrix}
\mathbf{A}_{(1,1)} & \mathbf{A}_{(1,2)} & & & \cdots & \mathbf{A}_{(1,n-1)} & \mathbf{A}_{(1,n)} \\
\mathbf{A}_{(2,1)} & \mathbf{A}_{(1,1)} & \mathbf{A}_{(1,2)} & & & & \mathbf{A}_{(1,n-1)} \\
& \ddots & \ddots & \ddots & & & \vdots \\
& & \mathbf{A}_{(2,1)} & \mathbf{A}_{(1,1)} & \mathbf{A}_{(1,2)} & & \\
\vdots & & & \ddots & \ddots & \ddots & \\
\mathbf{A}_{(n-1,1)} & & & & \mathbf{A}_{(2,1)} & \mathbf{A}_{(1,1)} & \mathbf{A}_{(1,2)} \\
\mathbf{A}_{(n,1)} & \mathbf{A}_{(n-1,1)} & \cdots & & & \mathbf{A}_{(2,1)} & \mathbf{A}_{(1,1)}
\end{bmatrix}.</math>

==Block transpose==
A special form of matrix [[transpose]] can also be defined for block matrices, where individual blocks are reordered but not transposed. Let <math>A=(B_{ij})</math> be a <math>k \times l</math> block matrix with <math>m \times n</math> blocks <math>B_{ij}</math>, the block transpose of <math>A</math> is the <math>l \times k</math> block matrix <math>A^\mathcal{B}</math> with <math>m \times n</math> blocks <math>\left(A^\mathcal{B}\right)_{ij} = B_{ji}</math>.<ref>{{cite thesis |last=Mackey |first=D. Steven |date=2006 |title=Structured linearizations for matrix polynomials |publisher=University of Manchester |issn=1749-9097 |oclc=930686781 |url=http://eprints.maths.manchester.ac.uk/314/1/mackey06.pdf}}</ref>

As with the conventional trace operator, the block transpose is a [[linear mapping]] such that <math>(A + C)^\mathcal{B} = A^\mathcal{B} + C^\mathcal{B} </math>. However, in general the property <math>(A C)^\mathcal{B} = C^\mathcal{B} A^\mathcal{B} </math> does not hold unless the blocks of <math>A</math> and <math>C</math> commute.

==Direct sum==
{{See also|Matrix addition#Direct sum}}
{{See also|Matrix addition#Direct sum}}
For any arbitrary matrices '''A''' (of size ''m''&nbsp;×&nbsp;''n'') and '''B''' (of size ''p''&nbsp;×&nbsp;''q''), we have the '''direct sum''' of '''A''' and '''B''', denoted by '''A'''&nbsp;<math>\oplus</math>&nbsp;'''B''' and defined as
For any arbitrary matrices '''A''' (of size ''m''&nbsp;×&nbsp;''n'') and '''B''' (of size ''p''&nbsp;×&nbsp;''q''), we have the '''direct sum''' of '''A''' and '''B''', denoted by '''A'''&nbsp;<math>\oplus</math>&nbsp;'''B''' and defined as
:<math>
:<math>
\mathbf{A} \oplus \mathbf{B} =
{A} \oplus {B} =
\begin{bmatrix}
\begin{bmatrix}
a_{11} & \cdots & a_{1n} & 0 & \cdots & 0 \\
a_{11} & \cdots & a_{1n} & 0 & \cdots & 0 \\
Line 246: Line 295:
0 & \cdots & 0 & b_{p1} & \cdots & b_{pq}
0 & \cdots & 0 & b_{p1} & \cdots & b_{pq}
\end{bmatrix}.
\end{bmatrix}.
</math>
</math><ref name=":1" />


For instance,
For instance,
Line 271: Line 320:
Note that any element in the [[direct sum of vector spaces|direct sum]] of two [[vector space]]s of matrices could be represented as a direct sum of two matrices.
Note that any element in the [[direct sum of vector spaces|direct sum]] of two [[vector space]]s of matrices could be represented as a direct sum of two matrices.


====Block diagonal matrices {{anchor|Block diagonal matrix}} ====
==Application==
{{See also|Diagonal matrix}}
In [[linear algebra]] terms, the use of a block matrix corresponds to having a [[linear mapping]] thought of in terms of corresponding 'bunches' of [[basis vector]]s. That again matches the idea of having distinguished direct sum decompositions of the [[domain of a function|domain]] and [[range of a function|range]]. It is always particularly significant if a block is the [[zero matrix]]; that carries the information that a summand maps into a sub-sum.
A '''block diagonal matrix''' is a block matrix that is a [[square matrix]] such that the main-diagonal blocks are square matrices and all off-diagonal blocks are zero matrices.<ref name=":0">{{Cite book |last1=Abadir |first1=Karim M. |title=Matrix Algebra |last2=Magnus |first2=Jan R. |publisher=Cambridge University Press |year=2005 |isbn=9781139443647 |pages=97,100,106,111,114,118 |language=en}}</ref> That is, a block diagonal matrix '''A''' has the form

:<math>{A} = \begin{bmatrix}
{A}_1 & {0} & \cdots & {0} \\
{0} & {A}_2 & \cdots & {0} \\
\vdots & \vdots & \ddots & \vdots \\
{0} & {0} & \cdots & {A}_n
\end{bmatrix}</math>

where '''A'''<sub>''k''</sub> is a square matrix for all ''k'' = 1, ..., ''n''. In other words, matrix '''A''' is the [[direct sum of matrices|direct sum]] of '''A'''<sub>1</sub>, ..., '''A'''<sub>''n''</sub>.<ref name=":0" /> It can also be indicated as '''A'''<sub>1</sub>&nbsp;⊕&nbsp;'''A'''<sub>2</sub>&nbsp;⊕&nbsp;...&nbsp;⊕&nbsp;'''A'''<sub>''n''</sub><ref name=":1" /> or diag('''A'''<sub>1</sub>, '''A'''<sub>2</sub>, ..., '''A'''<sub>''n''</sub>)<ref name=":1">{{Cite book |last=Gentle |first=James E. |title=Matrix Algebra: Theory, Computations, and Applications in Statistics |date=2007 |publisher=Springer New York Springer e-books |isbn=978-0-387-70873-7 |series=Springer Texts in Statistics |location=New York, NY |pages=47,487}}</ref>&nbsp;(the latter being the same formalism used for a [[diagonal matrix]]). Any square matrix can trivially be considered a block diagonal matrix with only one block.

For the [[determinant]] and [[trace (linear algebra)|trace]], the following properties hold:
:<math>\begin{align}
\det{A} &= \det{A}_1 \times \cdots \times \det{A}_n,
\end{align}</math><ref>{{Cite book |last1=Quarteroni |first1=Alfio |title=Numerical mathematics |last2=Sacco |first2=Riccardo |last3=Saleri |first3=Fausto |date=2000 |publisher=Springer |isbn=978-0-387-98959-4 |series=Texts in applied mathematics |location=New York |pages=10,13}}</ref><ref name=":6">{{Cite journal |last1=George |first1=Raju K. |last2=Ajayakumar |first2=Abhijith |date=2024 |title=A Course in Linear Algebra |url=https://doi.org/10.1007/978-981-99-8680-4 |journal=University Texts in the Mathematical Sciences |language=en |pages=35,407 |doi=10.1007/978-981-99-8680-4 |isbn=978-981-99-8679-8 |issn=2731-9318}}</ref> and
:<math>\begin{align}
\operatorname{tr}{A} &= \operatorname{tr} {A}_1 + \cdots + \operatorname{tr} {A}_n.\end{align}</math><ref name=":0" /><ref name=":6" />

A block diagonal matrix is invertible [[if and only if]] each of its main-diagonal blocks are invertible, and in this case its inverse is another block diagonal matrix given by
:<math>\begin{bmatrix}
{A}_{1} & {0} & \cdots & {0} \\
{0} & {A}_{2} & \cdots & {0} \\
\vdots & \vdots & \ddots & \vdots \\
{0} & {0} & \cdots & {A}_{n}
\end{bmatrix}^{-1} = \begin{bmatrix}
{A}_{1}^{-1} & {0} & \cdots & {0} \\
{0} & {A}_{2}^{-1} & \cdots & {0} \\
\vdots & \vdots & \ddots & \vdots \\
{0} & {0} & \cdots & {A}_{n}^{-1}
\end{bmatrix}.
</math><ref>{{Cite book |last=Prince |first=Simon J. D. |title=Computer vision: models, learning, and inference |date=2012 |publisher=Cambridge university press |isbn=978-1-107-01179-3 |location=New York |pages=531}}</ref>

The [[eigenvalues and eigenvectors|eigenvalues]]<ref name=":5" /> [[eigenvalues and eigenvectors|and eigenvectors]] of <math>{A}</math> are simply those of the <math>{A}_k</math>s combined.<ref name=":6" />

===Block tridiagonal matrices===
{{See also|Tridiagonal matrix}}
A '''block tridiagonal matrix''' is another special block matrix, which is just like the block diagonal matrix a [[square matrix]], having square matrices (blocks) in the lower diagonal, [[main diagonal]] and upper diagonal, with all other blocks being zero matrices. It is essentially a [[tridiagonal matrix]] but has submatrices in places of scalars. A block tridiagonal matrix <math>A</math> has the form

:<math>{A} = \begin{bmatrix}
{B}_{1} & {C}_{1} & & & \cdots & & {0} \\
{A}_{2} & {B}_{2} & {C}_{2} & & & & \\
& \ddots & \ddots & \ddots & & & \vdots \\
& & {A}_{k} & {B}_{k} & {C}_{k} & & \\
\vdots & & & \ddots & \ddots & \ddots & \\
& & & & {A}_{n-1} & {B}_{n-1} & {C}_{n-1} \\
{0} & & \cdots & & & {A}_{n} & {B}_{n}
\end{bmatrix}</math>

where <math>{A}_{k}</math>, <math>{B}_{k}</math> and <math>{C}_{k}</math> are square sub-matrices of the lower, main and upper diagonal respectively.<ref>{{Cite book |last=Dietl |first=Guido K. E. |url=https://www.worldcat.org/title/ocm85898525 |title=Linear estimation and detection in Krylov subspaces |date=2007 |publisher=Springer |isbn=978-3-540-68478-7 |series=Foundations in signal processing, communications and networking |location=Berlin ; New York |pages=85,87 |language=en |oclc=ocm85898525}}</ref><ref>{{Cite book |last1=Horn |first1=Roger A. |title=Matrix analysis |last2=Johnson |first2=Charles R. |date=2017 |publisher=Cambridge University Press |isbn=978-0-521-83940-2 |edition=Second edition, corrected reprint |location=New York, NY |pages=36 |language=en}}</ref>

Block tridiagonal matrices are often encountered in numerical solutions of engineering problems (e.g., [[computational fluid dynamics]]). Optimized numerical methods for [[LU factorization]] are available<ref>{{Cite book |last=Datta |first=Biswa Nath |title=Numerical linear algebra and applications |date=2010 |publisher=SIAM |isbn=978-0-89871-685-6 |edition=2 |location=Philadelphia, Pa |pages=168}}</ref> and hence efficient solution algorithms for equation systems with a block tridiagonal matrix as coefficient matrix. The [[Thomas algorithm]], used for efficient solution of equation systems involving a [[tridiagonal matrix]] can also be applied using matrix operations to block tridiagonal matrices (see also [[Block LU decomposition]]).

===Block triangular matrices===
{{See also|Triangular matrix}}
====Upper block triangular====
A matrix <math>A</math> is '''upper block triangular''' (or '''block upper triangular'''<ref name=":7">{{Cite book |last=Stewart |first=Gilbert W. |title=Matrix algorithms. 2: Eigensystems |date=2001 |publisher=Soc. for Industrial and Applied Mathematics |isbn=978-0-89871-503-3 |location=Philadelphia, Pa |pages=5}}</ref>) if

:<math>A = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1k} \\
0 & A_{22} & \cdots & A_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{kk}
\end{bmatrix}</math>,

where <math>A_{ij} \in \mathbb{F}^{n_i \times n_j}</math> for all <math>i, j = 1, \ldots, k</math>.<ref name=":5">{{Cite book |last=Bernstein |first=Dennis S. |title=Matrix mathematics: theory, facts, and formulas |publisher=Princeton University Press |year=2009 |isbn=978-0-691-14039-1 |edition=2 |location=Princeton, NJ |pages=168,298 |language=en}}</ref><ref name=":7" />

====Lower block triangular====
A matrix <math>A</math> is '''lower block triangular''' if

:<math>A = \begin{bmatrix}
A_{11} & 0 & \cdots & 0 \\
A_{21} & A_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
A_{k1} & A_{k2} & \cdots & A_{kk}
\end{bmatrix}</math>,

where <math>A_{ij} \in \mathbb{F}^{n_i \times n_j}</math> for all <math>i, j = 1, \ldots, k</math>.<ref name=":5" />

===Block Toeplitz matrices===
{{See also|Toeplitz matrix}}
A '''block Toeplitz matrix''' is another special block matrix, which contains blocks that are repeated down the diagonals of the matrix, as a [[Toeplitz matrix]] has elements repeated down the diagonal.

A matrix <math>A</math> is '''block Toeplitz''' if <math>A_{(i,j)} = A_{(k,l)}</math> for all <math>k - i = l - j</math>, that is,

:<math>A = \begin{bmatrix}
A_1 & A_2 & A_3 & \cdots \\
A_4 & A_1 & A_2 & \cdots \\
A_5 & A_4 & A_1 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}</math>,

where <math>A_i \in \mathbb{F}^{n_i \times m_i}</math>.<ref name=":5" />

===Block Hankel matrices===
{{See also|Hankel matrix}}


A matrix <math>A</math> is '''block Hankel''' if <math>A_{(i,j)} = A_{(k,l)}</math> for all <math>i + j = k + l</math>, that is,
Given the interpretation ''via'' linear mappings and direct sums, there is a special type of block matrix that occurs for square matrices (the case ''m'' = ''n''). For those we can assume an interpretation as an [[endomorphism]] of an ''n''-dimensional space ''V''; the block structure in which the bunching of rows and columns is the same is of importance because it corresponds to having a single direct sum decomposition on ''V'' (rather than two). In that case, for example, the [[diagonal]] blocks in the obvious sense are all square. This type of structure is required to describe the [[Jordan normal form]].


:<math>A = \begin{bmatrix}
This technique is used to cut down calculations of matrices, column-row expansions, and many [[computer science]] applications, including [[VLSI]] chip design. An example is the [[Strassen algorithm]] for fast [[matrix multiplication]], as well as the [[Hamming(7,4)]] encoding for error detection and recovery in data transmissions.
A_1 & A_2 & A_3 & \cdots \\
A_2 & A_3 & A_4 & \cdots \\
A_3 & A_4 & A_5 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}</math>,


where <math>A_i \in \mathbb{F}^{n_i \times m_i}</math>.<ref name=":5" />
The technique can also be used where the elements of the A,B,C, and D matrices do not all require the same field for their elements. For example, the matrix A can be over the field of complex numbers, while the matrix D can be over the field of real numbers. This can lead to valid operations involving the matrices, while simplifying the operations within one of the matrices. For example, if D has only real elements finding its inverse takes less calculations than if complex elements must be considered. But the reals is a subfield of the complex numbers (further it can be considered a projection), so the matrices operations can be well defined.


==See also==
==See also==
*[[Kronecker product]] (matrix direct product resulting in a block matrix)
* [[Kronecker product]] (matrix direct product resulting in a block matrix)
* [[Jordan normal form]] (canonical form of a linear operator on a finite-dimensional complex vector space)
* [[Strassen algorithm]] (algorithm for matrix multiplication that is faster than the conventional matrix multiplication algorithm)


==Notes==
==Notes==

Latest revision as of 15:57, 12 August 2024

In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices.[1][2]

Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices.[3][2] For example, the 3x4 matrix presented below is divided by horizontal and vertical lines into four blocks: the top-left 2x3 block, the top-right 2x1 block, the bottom-left 1x3 block, and the bottom-right 1x1 block.

Any matrix may be interpreted as a block matrix in one or more ways, with each interpretation defined by how its rows and columns are partitioned.

This notion can be made more precise for an by matrix by partitioning into a collection , and then partitioning into a collection . The original matrix is then considered as the "total" of these groups, in the sense that the entry of the original matrix corresponds in a 1-to-1 way with some offset entry of some , where and .[4]

Block matrix algebra arises in general from biproducts in categories of matrices.[5]

A 168×168 element block matrix with 12×12, 12×24, 24×12, and 24×24 sub-matrices. Non-zero elements are in blue, zero elements are grayed.

Example

[edit]

The matrix

can be visualized as divided into four blocks, as

.

The horizontal and vertical lines have no special mathematical meaning,[6][7] but are a common way to visualize a partition.[6][7] By this partition, is partitioned into four 2×2 blocks, as

The partitioned matrix can then be written as

[8]

Formal definition

[edit]

Let . A partitioning of is a representation of in the form

,

where are contiguous submatrices, , and .[9] The elements of the partition are called blocks.[9]

By this definition, the blocks in any one column must all have the same number of columns.[9] Similarly, the blocks in any one row must have the same number of rows.[9]

Partitioning methods

[edit]

A matrix can be partitioned in many ways.[9] For example, a matrix is said to be partitioned by columns if it is written as

,

where is the th column of .[9] A matrix can also be partitioned by rows:

,

where is the th row of .[9]

Common partitions

[edit]

Often,[9] we encounter the 2x2 partition

,[9]

particularly in the form where is a scalar:

.[9]

Block matrix operations

[edit]

Transpose

[edit]

Let

where . (This matrix will be reused in § Addition and § Multiplication.) Then its transpose is

,[9][10]

and the same equation holds with the transpose replaced by the conjugate transpose.[9]

Block transpose

[edit]

A special form of matrix transpose can also be defined for block matrices, where individual blocks are reordered but not transposed. Let be a block matrix with blocks , the block transpose of is the block matrix with blocks .[11] As with the conventional trace operator, the block transpose is a linear mapping such that .[10] However, in general the property does not hold unless the blocks of and commute.

Addition

[edit]

Let

,

where , and let be the matrix defined in § Transpose. (This matrix will be reused in § Multiplication.) Then if , , , and , then

.[9]

Multiplication

[edit]

It is possible to use a block partitioned matrix product that involves only algebra on submatrices of the factors. The partitioning of the factors is not arbitrary, however, and requires "conformable partitions"[12] between two matrices and such that all submatrix products that will be used are defined.[13]

Two matrices and are said to be partitioned conformally for the product , when and are partitioned into submatrices and if the multiplication is carried out treating the submatrices as if they are scalars, but keeping the order, and when all products and sums of submatrices involved are defined.

— Arak M. Mathai and Hans J. Haubold, Linear Algebra: A Course for Physicists and Engineers[14]

Let be the matrix defined in § Transpose, and let be the matrix defined in § Addition. Then the matrix product

can be performed blockwise, yielding as an matrix. The matrices in the resulting matrix are calculated by multiplying:

[6]

Or, using the Einstein notation that implicitly sums over repeated indices:

Depicting as a matrix, we have

.[9]

Inversion

[edit]

If a matrix is partitioned into four blocks, it can be inverted blockwise as follows:

where A and D are square blocks of arbitrary size, and B and C are conformable with them for partitioning. Furthermore, A and the Schur complement of A in P: P/A = DCA−1B must be invertible.[15]

Equivalently, by permuting the blocks:

[16]

Here, D and the Schur complement of D in P: P/D = ABD−1C must be invertible.

If A and D are both invertible, then:

By the Weinstein–Aronszajn identity, one of the two matrices in the block-diagonal matrix is invertible exactly when the other is.

Determinant

[edit]

The formula for the determinant of a -matrix above continues to hold, under appropriate further assumptions, for a matrix composed of four submatrices . The easiest such formula, which can be proven using either the Leibniz formula or a factorization involving the Schur complement, is

[16]

Using this formula, we can derive that characteristic polynomials of and are same and equal to the product of characteristic polynomials of and . Furthermore, If or is diagonalizable, then and are diagonalizable too. The converse is false; simply check .

If is invertible, one has

[16]

and if is invertible, one has

[17][16]

If the blocks are square matrices of the same size further formulas hold. For example, if and commute (i.e., ), then

[18]

This formula has been generalized to matrices composed of more than blocks, again under appropriate commutativity conditions among the individual blocks.[19]

For and , the following formula holds (even if and do not commute)

[16]

Special types of block matrices

[edit]

Direct sums and block diagonal matrices

[edit]

Direct sum

[edit]

For any arbitrary matrices A (of size m × n) and B (of size p × q), we have the direct sum of A and B, denoted by A  B and defined as

[10]

For instance,

This operation generalizes naturally to arbitrary dimensioned arrays (provided that A and B have the same number of dimensions).

Note that any element in the direct sum of two vector spaces of matrices could be represented as a direct sum of two matrices.

Block diagonal matrices

[edit]

A block diagonal matrix is a block matrix that is a square matrix such that the main-diagonal blocks are square matrices and all off-diagonal blocks are zero matrices.[16] That is, a block diagonal matrix A has the form

where Ak is a square matrix for all k = 1, ..., n. In other words, matrix A is the direct sum of A1, ..., An.[16] It can also be indicated as A1 ⊕ A2 ⊕ ... ⊕ An[10] or diag(A1, A2, ..., An)[10] (the latter being the same formalism used for a diagonal matrix). Any square matrix can trivially be considered a block diagonal matrix with only one block.

For the determinant and trace, the following properties hold:

[20][21] and
[16][21]

A block diagonal matrix is invertible if and only if each of its main-diagonal blocks are invertible, and in this case its inverse is another block diagonal matrix given by

[22]

The eigenvalues[23] and eigenvectors of are simply those of the s combined.[21]

Block tridiagonal matrices

[edit]

A block tridiagonal matrix is another special block matrix, which is just like the block diagonal matrix a square matrix, having square matrices (blocks) in the lower diagonal, main diagonal and upper diagonal, with all other blocks being zero matrices. It is essentially a tridiagonal matrix but has submatrices in places of scalars. A block tridiagonal matrix has the form

where , and are square sub-matrices of the lower, main and upper diagonal respectively.[24][25]

Block tridiagonal matrices are often encountered in numerical solutions of engineering problems (e.g., computational fluid dynamics). Optimized numerical methods for LU factorization are available[26] and hence efficient solution algorithms for equation systems with a block tridiagonal matrix as coefficient matrix. The Thomas algorithm, used for efficient solution of equation systems involving a tridiagonal matrix can also be applied using matrix operations to block tridiagonal matrices (see also Block LU decomposition).

Block triangular matrices

[edit]

Upper block triangular

[edit]

A matrix is upper block triangular (or block upper triangular[27]) if

,

where for all .[23][27]

Lower block triangular

[edit]

A matrix is lower block triangular if

,

where for all .[23]

Block Toeplitz matrices

[edit]

A block Toeplitz matrix is another special block matrix, which contains blocks that are repeated down the diagonals of the matrix, as a Toeplitz matrix has elements repeated down the diagonal.

A matrix is block Toeplitz if for all , that is,

,

where .[23]

Block Hankel matrices

[edit]

A matrix is block Hankel if for all , that is,

,

where .[23]

See also

[edit]
  • Kronecker product (matrix direct product resulting in a block matrix)
  • Jordan normal form (canonical form of a linear operator on a finite-dimensional complex vector space)
  • Strassen algorithm (algorithm for matrix multiplication that is faster than the conventional matrix multiplication algorithm)

Notes

[edit]
  1. ^ Eves, Howard (1980). Elementary Matrix Theory (reprint ed.). New York: Dover. p. 37. ISBN 0-486-63946-0. Retrieved 24 April 2013. We shall find that it is sometimes convenient to subdivide a matrix into rectangular blocks of elements. This leads us to consider so-called partitioned, or block, matrices.
  2. ^ a b Dobrushkin, Vladimir. "Partition Matrices". Linear Algebra with Mathematica. Retrieved 2024-03-24.
  3. ^ Anton, Howard (1994). Elementary Linear Algebra (7th ed.). New York: John Wiley. p. 30. ISBN 0-471-58742-7. A matrix can be subdivided or partitioned into smaller matrices by inserting horizontal and vertical rules between selected rows and columns.
  4. ^ Indhumathi, D.; Sarala, S. (2014-05-16). "Fragment Analysis and Test Case Generation using F-Measure for Adaptive Random Testing and Partitioned Block based Adaptive Random Testing" (PDF). International Journal of Computer Applications. 93 (6): 13. doi:10.5120/16218-5662.
  5. ^ Macedo, H.D.; Oliveira, J.N. (2013). "Typing linear algebra: A biproduct-oriented approach". Science of Computer Programming. 78 (11): 2160–2191. arXiv:1312.4818. doi:10.1016/j.scico.2012.07.012.
  6. ^ a b c Johnston, Nathaniel (2021). Introduction to linear and matrix algebra. Cham, Switzerland: Springer Nature. pp. 30, 425. ISBN 978-3-030-52811-9.
  7. ^ a b Johnston, Nathaniel (2021). Advanced linear and matrix algebra. Cham, Switzerland: Springer Nature. p. 298. ISBN 978-3-030-52814-0.
  8. ^ Jeffrey, Alan (2010). Matrix operations for engineers and scientists: an essential guide in linear algebra. Dordrecht [Netherlands] ; New York: Springer. p. 54. ISBN 978-90-481-9273-1. OCLC 639165077.
  9. ^ a b c d e f g h i j k l m n Stewart, Gilbert W. (1998). Matrix algorithms. 1: Basic decompositions. Philadelphia, PA: Soc. for Industrial and Applied Mathematics. pp. 18–20. ISBN 978-0-89871-414-2.
  10. ^ a b c d e Gentle, James E. (2007). Matrix Algebra: Theory, Computations, and Applications in Statistics. Springer Texts in Statistics. New York, NY: Springer New York Springer e-books. pp. 47, 487. ISBN 978-0-387-70873-7.
  11. ^ Mackey, D. Steven (2006). Structured linearizations for matrix polynomials (PDF) (Thesis). University of Manchester. ISSN 1749-9097. OCLC 930686781.
  12. ^ Eves, Howard (1980). Elementary Matrix Theory (reprint ed.). New York: Dover. p. 37. ISBN 0-486-63946-0. Retrieved 24 April 2013. A partitioning as in Theorem 1.9.4 is called a conformable partition of A and B.
  13. ^ Anton, Howard (1994). Elementary Linear Algebra (7th ed.). New York: John Wiley. p. 36. ISBN 0-471-58742-7. ...provided the sizes of the submatrices of A and B are such that the indicated operations can be performed.
  14. ^ Mathai, Arakaparampil M.; Haubold, Hans J. (2017). Linear Algebra: a course for physicists and engineers. De Gruyter textbook. Berlin Boston: De Gruyter. p. 162. ISBN 978-3-11-056259-0.
  15. ^ Bernstein, Dennis (2005). Matrix Mathematics. Princeton University Press. p. 44. ISBN 0-691-11802-7.
  16. ^ a b c d e f g h Abadir, Karim M.; Magnus, Jan R. (2005). Matrix Algebra. Cambridge University Press. pp. 97, 100, 106, 111, 114, 118. ISBN 9781139443647.
  17. ^ Taboga, Marco (2021). "Determinant of a block matrix", Lectures on matrix algebra.
  18. ^ Silvester, J. R. (2000). "Determinants of Block Matrices" (PDF). Math. Gaz. 84 (501): 460–467. doi:10.2307/3620776. JSTOR 3620776. Archived from the original (PDF) on 2015-03-18. Retrieved 2021-06-25.
  19. ^ Sothanaphan, Nat (January 2017). "Determinants of block matrices with noncommuting blocks". Linear Algebra and Its Applications. 512: 202–218. arXiv:1805.06027. doi:10.1016/j.laa.2016.10.004. S2CID 119272194.
  20. ^ Quarteroni, Alfio; Sacco, Riccardo; Saleri, Fausto (2000). Numerical mathematics. Texts in applied mathematics. New York: Springer. pp. 10, 13. ISBN 978-0-387-98959-4.
  21. ^ a b c George, Raju K.; Ajayakumar, Abhijith (2024). "A Course in Linear Algebra". University Texts in the Mathematical Sciences: 35, 407. doi:10.1007/978-981-99-8680-4. ISBN 978-981-99-8679-8. ISSN 2731-9318.
  22. ^ Prince, Simon J. D. (2012). Computer vision: models, learning, and inference. New York: Cambridge university press. p. 531. ISBN 978-1-107-01179-3.
  23. ^ a b c d e Bernstein, Dennis S. (2009). Matrix mathematics: theory, facts, and formulas (2 ed.). Princeton, NJ: Princeton University Press. pp. 168, 298. ISBN 978-0-691-14039-1.
  24. ^ Dietl, Guido K. E. (2007). Linear estimation and detection in Krylov subspaces. Foundations in signal processing, communications and networking. Berlin ; New York: Springer. pp. 85, 87. ISBN 978-3-540-68478-7. OCLC 85898525.
  25. ^ Horn, Roger A.; Johnson, Charles R. (2017). Matrix analysis (Second edition, corrected reprint ed.). New York, NY: Cambridge University Press. p. 36. ISBN 978-0-521-83940-2.
  26. ^ Datta, Biswa Nath (2010). Numerical linear algebra and applications (2 ed.). Philadelphia, Pa: SIAM. p. 168. ISBN 978-0-89871-685-6.
  27. ^ a b Stewart, Gilbert W. (2001). Matrix algorithms. 2: Eigensystems. Philadelphia, Pa: Soc. for Industrial and Applied Mathematics. p. 5. ISBN 978-0-89871-503-3.

References

[edit]